Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7413
DC FieldValueLanguage
dc.contributor.authorallDi Biagio, C.; ENEA/UTMEA-TER, S. Maria di Galeria, Italyen
dc.contributor.authorallBertagnolio, P. P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authoralldi Sarra, A. G.; ENEA/UTMEA-TER, S. Maria di Galeria, Italyen
dc.contributor.authorallEriksen, P.; Danish Meteorological Institute, Copenhagen, Denmarken
dc.contributor.authorallAscanius, S. E.; Danish Meteorological Institute, Qanaaq, Greenlanden
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.date.accessioned2012-01-19T09:59:49Zen
dc.date.available2012-01-19T09:59:49Zen
dc.date.issued2011-11-07en
dc.identifier.urihttp://hdl.handle.net/2122/7413en
dc.description.abstractThe Arctic region plays a central role in the global climate system. Modifications in the Arctic radiative budget may strongly influence large scale atmospheric and oceanic circulation. The evaluation of the surface energy balance sensitivity to variations in several parameters, such as surface temperature, water vapour content, surface albedo, and atmospheric aerosols, is one of the main issues in assessing how the Arctic will respond to future climate changes. The NDACC station at Thule Air Base (76.5°N, 68.8°W) is equipped with a variety of instruments for the measurement of the radiative fluxes at the surface, aerosol optical properties, water vapour atmospheric content, and meteorological parameters. A Yankee Environmental System Total Solar Pyranometer (YES-TSP) and an Eppley pyrgeometer (PIR) are installed at Thule for the measurement of the global shortwave and longwave downward irradiances at the surface. The TSP was installed in 2002, while the PIR in 2009. A Cimel Sunphotometer measures aerosol optical properties and water vapour columnar content; the Cimel is part of the Aerosol Robotic Network and was installed in 2007. In winter, the water vapour columnar content is also measured at Thule with a millimeter-wave spectrometer (GBMS) operating in the 230-280 GHz range. GBMS measurements have been carried out during several winters between 2002 and 2011. A meteorological station, which measures surface temperature and pressure, relative humidity, wind speed and direction is also continuously operational at Thule. Satellite observations of the surface shortwave albedo obtained from MODIS have been used together with ground-based measurements. Four years (2007 to 2010) of surface shortwave irradiance at the surface, aerosol optical properties, and water vapour have been combined with satellite observations of the surface albedo. Radiative transfer model calculations are used to reproduce the observed shortwave fluxes and to separate the effects of the different parameters in modulating the cloud-free downward shortwave radiation at the ground. Water vapour is the main factor affecting the cloud-free shortwave irradiance at the surface. Its column value varies between 0.1 and 1.4 cm during the period spring to early autumn. Water vapour produces a reduction of the surface shortwave flux by -(212%). The surface albedo varies between 0.05 and 0.66 in the period March to September, with values larger than 0.5 in spring and smaller than 0.1 in summer. In spring the surface albedo induces an increase by +(2-4.5%) in the downward shortwave radiation. The aerosol optical depth at 500 nm is generally lower than 0.2; atmospheric aerosols produce a reduction in the shortwave radiation down to -5%. On annual base, the mean effects of water vapour and surface albedo are estimated to be –(10-11) Wm-2 and +(2-3) Wm-2, respectively. The temperature and humidity profiles in the troposphere have the strongest influence on the cloud-free downwelling longwave irradiance. In wintertime, in absence of solar radiation, the longwave fluxes dominate the surface radiation budget. GBMS water vapour measurements from winters 2009 to 2011 have been used, together with surface humidity and temperature, to investigate the relative influence of these factors in affecting the downwelling longwave irradiance.en
dc.language.isoEnglishen
dc.relation.ispartofNDACC Symposiumen
dc.subjectshortwave infrareden
dc.subjectlongwave infrareden
dc.subjectradiation budgeten
dc.subjectaerosolsen
dc.subjectwater vapouren
dc.subjectGreenlanden
dc.subjectArcticen
dc.titleRadiative measurements at Thule, Greenland: factors affecting the cloud-free shortwave and longwave radiative budget in the Arcticen
dc.typeConference paperen
dc.description.statusUnpublisheden
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.05. Radiationen
dc.description.ConferenceLocationRéunion Island, Franciaen
dc.relation.referencesLong C.N., T.P. Ackerman, Identification of clear skies from broadband pyranometer measurements and calculation of downwelling, shortwave cloud effects, J. Geophys. Res., 105, 609 -626, 2000. Durr, B., and R. Philipona, Automatic cloud amount detection by surface longwave radiation measurements, J. Geophys. Res., 109, D05201 (2004), doi:10.1029/2003JD004182. Ruckstuhl, C., R. Philipona, J. Morland, and A. Ohmura, Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes, J. Geophys. Res., 112, D03302 (2007), doi:10.1029/2006JD007850.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.fulltextopenen
dc.contributor.authorDi Biagio, C.en
dc.contributor.authorBertagnolio, P. P.en
dc.contributor.authordi Sarra, A. G.en
dc.contributor.authorEriksen, P.en
dc.contributor.authorAscanius, S. E.en
dc.contributor.authorMuscari, G.en
dc.contributor.departmentENEA/UTMEA-TER, S. Maria di Galeria, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentENEA/UTMEA-TER, S. Maria di Galeria, Italyen
dc.contributor.departmentDanish Meteorological Institute, Copenhagen, Denmarken
dc.contributor.departmentDanish Meteorological Institute, Qanaaq, Greenlanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
item.openairetypeConference paper-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptENEA/UTMEA-TER, S. Maria di Galeria, Italy-
crisitem.author.deptDanish Meteorological Institute, Copenhagen, Denmark-
crisitem.author.deptDanish Meteorological Institute, Qanaaq, Greenland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-2405-2898-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
2011_NDACC_DiBiagio_PPB.pdf502.54 kBAdobe PDFView/Open
Show simple item record

Page view(s) 20

312
checked on Apr 20, 2024

Download(s) 50

159
checked on Apr 20, 2024

Google ScholarTM

Check