Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7412

Authors: Agostini, A.*
Bonini, M.*
Corti, G.*
Sani, F.*
Mazzarini, F.*
Title: Fault architecture in the Main Ethiopian Rift and comparison with experimental models: Implications for rift evolution and Nubia–Somalia kinematics
Title of journal: Earth and Planetary Science Letters
Series/Report no.: 3-4/ 301(2011)
Publisher: Elsevier
Issue Date: 15-Jan-2011
DOI: 10.1016/j.epsl.2010.11.024
Keywords: continental rifting
East African Rift
Main Ethiopian Rift
rift kinematics
plate kinematics
Abstract: The Main Ethiopian Rift (MER) offers a complete record of the time–space evolution of a continental rift. We have characterized the brittle deformation in different rift sectors through the statistical analysis of a new database of faults obtained from the integration between satellite images and digital elevation models, and implemented with field controls. This analysis has been compared with the results of lithospheric-scale analogue models reproducing the kinematical conditions of orthogonal and oblique rifting. Integration of these approaches suggests substantial differences in fault architecture in the different rift sectors that in turn reflect an along-axis variation of the rift development and southward decrease in rift evolution. The northernmost MER sector is in a mature stage of incipient continental rupture, with deformation localised within the rift floor along discrete tectono-magmatic segments and almost inactive boundary faults. The central MER sector records a transitional stage in which migration of deformation from boundary faults to faults internal to the rift valley is in an incipient phase. The southernmost MER sector is instead in an early continental stage, with the largest part of deformation being accommodated by boundary faults and almost absent internal faults. The MER thus records along its axis the typical evolution of continental rifting, from fault-dominated rift morphology in the early stages of extension toward magma-dominated extension during break-up. The extrapolation of modelling results suggests that a variable rift obliquity contributes to the observed along-axis variations in rift architecture and evolutionary stage, being oblique rifting conditions controlling the MER evolution since its birth in the Late Miocene in relation to a constant post ca. 11 Ma ~ N100°E Nubia–Somalia motion.
Appears in Collections:04.04.09. Structural geology
04.07.07. Tectonics
04.07.02. Geodynamics
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
EPSL_Agostini_etal_2011.pdf1.52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA