Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7319
DC FieldValueLanguage
dc.contributor.authorallHeuret, A.; Univ Roma Treen
dc.contributor.authorallLallemand, S.; Univ Montpellieren
dc.contributor.authorallFuniciello, F.; Univ Roma Treen
dc.contributor.authorallPiromallo, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFaccenna, C.; Univ Roma Treen
dc.date.accessioned2012-01-17T10:36:45Zen
dc.date.available2012-01-17T10:36:45Zen
dc.date.issued2011-01-19en
dc.identifier.urihttp://hdl.handle.net/2122/7319en
dc.description.abstractBased on global earthquake catalogs, the hypocenters, nodal planes, and seismic moments of worldwide subduction plate interface earthquakes were extracted for the period between 1900 and 2007. Assuming that the seismogenic zone coincides with the distribution of 5.5 ≤ M < 7 earthquakes, the subduction interface seismogenic zones were mapped for 80% of the trench systems and characterized with geometrical and mechanical parameters. Using this database, correlations were isolated between significant parameters to identify cause-effect relationships. Empirical laws obtained in previous studies were revisited in light of this more complete, accurate, and uniform description of the subduction interface seismogenic zone. The seismogenic zone was usually found to end in a fore-arc mantle, rather than at a Moho depth. The subduction velocity was the first-order controlling parameter for variations in the physical characteristics of plate interfaces, determining both the geometry and mechanical behavior. As such, the fast subduction zones and cold slabs were associated with large and steep plate interfaces, which, in turn, had large seismic rates. The subduction velocity could not account for the potential earthquake magnitude diversity that was observed along the trenches. Events with Mw ≥ 8.5 preferentially occurred in the vicinity of slab edges, where the upper plate was continental and the back-arc strain was neutral. This observation was interpreted in terms of compressive normal stresses along the plate interface. Large lateral ruptures should be promoted in neutral subduction zones due to moderate compressive stresses along the plate interface that allow the rupture to propagate laterally.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofGeochemistry Geophysics Geosystemsen
dc.relation.ispartofseries/12(2011)en
dc.subjectsubduction zonesen
dc.subjectseismicityen
dc.subjectstatisticsen
dc.titlePhysical characteristics of subduction interface type seismogenic zones revisiteden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ01004en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2011/2010GC003230.shtmlen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1029/2010GC003230en
dc.relation.referencesBaumberger, T., F. Heslot, and B. Perrin (1994), Crossover from creep to inertial motion in friction dynamics, Nature, 367, 544–546, doi:10.1038/367544a0.[CrossRef] Bilek, S. (2007), Influence of subducting topography on earthquake rupture, in The Seismogenic Zone of Subduction Thrust Faults, edited by T. H. Dixon and J. Casey Moore, pp. 123–146, Columbia Univ. Press, New York. Bilek, S. (2009), Seismicity along the South America subduction zone: Review of large earthquakes, tsunami and subduction zone complexity, Tectonophysics, doi:10.1016/j.tecto.2009.02.037, in press. Bird, P., and Y. Y. Kagan (2004), Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere and coupling in seven tectonic settings, Bull. Seismol. Soc. Am., 94(6), 2380–2399, doi:10.1785/0120030107.[CrossRef] Bird, P., Y. Y. Kagan, D. D. Jackson, F. P. Schoenberg, and M. J. Werner (2009), Linear and nonlinear relations between relative plate velocity and seismicity, Bull. Seismol. Soc. Am., 99, 3097–3113, doi:10.1785/0120090082.[CrossRef] Brune, J. N. (1968), Seismic moment, seismicity, and rate of slip along major fault zones, J. Geophys. Res., 73, 777–784, doi:10.1029/JB073i002p00777.[AGU] Byrne, D. E., D. M. Davis, and L. R. Sykes (1988), Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones, Tectonics, 7, 833–857, doi:10.1029/TC007i004p00833.[AGU] Byrne, D. E., L. R. Sykes, and D. M. Davies (1992), Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone, J. Geophys. Res., 97(B1), 449–478, doi:10.1029/91JB02165.[AGU] Clague, J. J. (1997), Evidence for large earthquakes at the Cascadia subduction zone, Rev. Geophys., 35, 439–460.[AGU] Conrad, C. P., S. Bilek, and C. Lithgow-Bertelloni (2004), Great earthquakes and slab pull: Interaction between seismic coupling and plate-slab coupling, Earth Planet. Sci. Lett., 218, 109–122, doi:10.1016/S0012-821X(03)00643-5.[CrossRef] Currie, C. A., R. D. Hyndman, K. Wang, and V. Kostoglodov (2002), Thermal models of the Mexico subduction zone: Implications for the megathrust seismogenic zone, J. Geophys. Res., 107(B12), 2370, doi:10.1029/2001JB000886.[AGU] DeMets, C., R. Gordon, D. Argus, and S. Stein (1990), Current plate motion, Geophys. J. Int., 101, 425–478, doi:10.1111/j.1365-246X.1990.tb06579.x.[CrossRef] Dessa, J.-X., F. Klingelhoefer, D. Graindorge, C. André, H. Permana, M.-A. Gutscher, A. Chauhan, S. C. Singh, and the SUMATRA-OBS Scientific Team (2009), Megathrust earthquakes can nucleate in the forearc mantle: Evidence from the 2004 Sumatra event, Geology, 37(7), 659–662, doi:10.1130/G25653A.1.[CrossRef] Dixon, T. H. (1993), GPS measurement of relative motion of the Cocos and Caribbean plates and strain accumulation across the Middle America trench, Geophys. Res. Lett., 20, 2167–2170, doi:10.1029/93GL02415.[AGU] Dziewonski, A. M., and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, doi:10.1029/JB086iB04p02825.[AGU] Engdahl, R., and A. Villaseñor (2002), Global seismicity: 1900–1999, in International Handbook of Earthquake and Engineering Seismology, Part A, edited by W. H. K. Lee et al., chap. 41, pp. 665–690, Academic, Amsterdam.[CrossRef] Engdahl, R., R. Van Der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am., 88, 722–743. Fedotov, S. A., A. V. Solomatin, and S. D. Chernyshev (2007), Long-term earthquake prediction for the Kuril-Kamchatka arc for 2006–2011 and successful prediction for the Middle Kuril Island earthquake, 15.11.2006, Ms = 8.2, J. Volcanol. Seismol., 1(3), 143–163, doi:10.1134/S0742046307030013.[CrossRef] Gripp, A. E., and R. G. Gordon (2002), Young tracks of hot spots and current plate velocities, Geophys. J. Int., 150, 321–361, doi:10.1046/j.1365-246X.2002.01627.x.[CrossRef] Guillaume, B., F. Funiciello, C. Faccenna, J. Martinod, and V. Olivetti (2010), Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian subduction zone, Geology, 38(9), 819–822, doi:10.1130/G31038.1.[CrossRef] Gutenberg, B., and C. F. Richter (1954), Seismicity of the Earth and Associated Phenomena, 310 pp., Princeton Univ. Press, Princeton, N. J. Gutscher, M.-A., and G. K. Westbrook (2009), Great earthquakes in slow subduction, low taper margins, in Subduction Zone Dynamics, edited by S. Lallemand and F. Funiciello, pp. 119–134, doi:10.1007/978-3-540-87974-9, Springer, Berlin.[CrossRef] Hanks, T. C., and H. Kanamori (1979), Moment magnitude scale, J. Geophys. Res., 84(B5), 2348–2350, doi:10.1029/JB084iB05p02348.[AGU] Hayes, C. W., and C. P. Conrad (2007), Subduction dynamics and great earthquakes, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract T52A-05. Heuret, A. (2005), Dynamique des zones de subduction: Etude statistique globale et approche analogique—Subduction zones dynamics: Global statistical study and experimental modelling, Ph.D. thesis, Univ. Montpellier II, Montpellier, France. (Available at http://tel.archives-ouvertes.fr/tel-00108728/en/. Heuret, A., and S. Lallemand (2005), Plate motions, slab dynamics and back-arc deformation, Phys. Earth Planet. Inter., 149, 31–51, doi:10.1016/j.pepi.2004.08.022.[CrossRef] Hyndman, R. D., and S. Peacock (2003), Serpentinization of the forearc mantle, Earth Planet. Sci. Lett., 212, 417–432.[CrossRef] Hyndman, R. D., and K. Wang (1993), Thermal constraints on the zone for major thrust earthquake failure: The Cascadia subduction zone, J. Geophys. Res., 98, 2039–2060, doi:10.1029/92JB02279.[AGU] Hyndman, R. D., M. Yamano, and K. Wang (1995), Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust, J. Geophys. Res., 100, 15,373–15,392, doi:10.1029/95JB00153.[AGU] Hyndman, R. D., M. Yamano, and D. A. Oleskevich (1997), The seismogenic zone of subduction thrust fault, Isl. Arc, 6, 244–260, doi:10.1111/j.1440-1738.1997.tb00175.x.[CrossRef] Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale (2005), Extent, duration and speed of the 2004 Sumatra-Andaman earthquake inaged by Hi-Net array, Nature, 435, 933–936, doi:10.1038/nature03675. Jarrard, R. D. (1986), Relations among subduction parameters, Rev. Geophys., 24, 217–284, doi:10.1029/RG024i002p00217.[AGU] Johnson, J. M., Y. Tanioka, L. J. Ruff, K. Satake, H. Kanamori, and L. R. Sykes (1994), The great Aleutian earthquake, Pure Appl. Geophys., 142, 3–28, doi:10.1007/BF00875966.[CrossRef] Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res., 82, 2981–2987, doi:10.1029/JB082i020p02981.[AGU] Kanamori, H. (1986), Rupture process of subduction-zone earthquakes, Annu. Rev. Earth Planet. Sci., 14, 293–322, doi:10.1146/annurev.ea.14.050186.001453.[CrossRef] Kelleher, J., J. Savino, H. Rowlett, and W. McCann (1974), Why and where great thrust earthquakes occur along island arcs, J. Geophys. Res., 79, 4889–4899, doi:10.1029/JB079i032p04889.[AGU] Kirby, S. H., S. Stein, E. A. Okal, and D. C. Rubie (1996), Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere, Rev. Geophys., 34(2), 261–306, doi:10.1029/96RG01050.[AGU] Kostoglodov, V. (1988), Sediment subduction: A probable key for seismicity and tectonics at active plate boundaries, Geophys. J., 94, 65–72. Lallemand, S., A. Heuret, and D. Boutelier (2005), On the relationships between slab dip, back-arc stress, upper plate absolute motion and crustal nature in subduction zones, Geochem. Geophys. Geosyst., 6, Q09006, doi:10.1029/2005GC000917.[AGU] Lallemand, S., A. Heuret, C. Faccenna, and F. Funiciello (2008), Subduction dynamics as revealed by trench migration, Tectonics, 27, TC3014, doi:10.1029/2007TC002212.[AGU] Lay, T., H. Kanamori, and L. Ruff (1982), The asperity model and the nature of large subduction zone earthquakes, Earthquake Predict. Res., 1, 3–71. Lay, T., et al. (2005), The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308(5725), 1127–1133, doi:10.1126/science.1112250.[CrossRef] Lundgren, P., M. Protti, A. Donnellan, M. Heflin, E. Hernandez, and D. Jefferson (1999), Seismic cycle and plate margin deformation in Costa Rica: GPS observations from 1994 to 1997, J. Geophys. Res., 104(B12), 28,915–28,926, doi:10.1029/1999JB900283.[AGU] Madariaga, R., M. Metois, C. Vigny, and J. Campos (2010), Central Chile finally breaks, Science, 328(5975), 181–182, doi:10.1126/science.1189197.[CrossRef] Marcaillou, B., G. Spence, K. Wang, J.-Y. Collot, and A. Ribodetti (2008), Thermal segmentation along the N. Ecuador-S. Colombia margin (1–4°N): Prominent influence of sedimentation rate in the trench, Earth Planet. Sci. Lett., 272(1–2), 296–308, doi:10.1016/j.epsl.2008.04.049.[CrossRef] McCaffrey, R. (1994), Dependence of earthquake size distributions on convergence rate at subduction zones, Geophys. Res. Lett., 21(21), 2327–2330, doi:10.1029/94GL02153.[AGU] McCaffrey, R. (1997a), Statistical significance of the seismic coupling coefficient, Bull. Seismol. Soc. Am., 87, 1069–1073. McCaffrey, R. (1997b), Influences of recurrence times and fault zone temperature on the age-rate dependence of subduction zone seismicity, J. Geophys. Res., 102, 22,839–22,854, doi:10.1029/97JB01827.[AGU] McCaffrey, R. (2007), The next great earthquake, Science, 315, 1675–1676, doi:10.1126/science.1140173.[CrossRef] McCaffrey, R. (2008), Global frequency of magnitude 9 earthquakes, Geology, 36(3), 263–266, doi:10.1130/G24402A.1.[CrossRef] McCann, W. R., S. P. Nishenko, L. R. Sykes, and J. Krause (1979), Seismic gaps and plate tectonics: Seismic potential for major boundaries, Pure Appl. Geophys., 117, 1082–1147, doi:10.1007/BF00876211.[CrossRef] Molnar, P. (1979), Earthquake recurrence intervals and plate tectonics, Bull. Seismol. Soc. Am., 69(1), 115–133. Moore, C., and D. Saffer (2001), Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 183–186, doi:10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2.[CrossRef] Moore, D. E., D. A. Lockner, M. Shengli, R. Summers, and J. D. Byerlee (1997), Strength of serpentinites gouges at elevated temperatures, J. Geophys. Res., 102, 14,787–14,801, doi:10.1029/97JB00995.[AGU] Morra, G., K. Regenauer-Lieb, and D. Giardini (2006), Curvature of oceanic arcs, Geology, 34(10), 877–890, doi:10.1130/G22462.1.[CrossRef] Müller, R., W. Roest, J.-Y. Royer, L. Gahagan, and J. Sclater (1997), Digital isochrons of the world's ocean floor, J. Geophys. Res., 102, 3211–3214, doi:10.1029/96JB01781.[AGU] Norabuena, E. O., L. Leffler, A. Mao, T. H. Dixon, S. Stein, I. S. Sacks, L. Ocola, and M. Ellis (1998), Space geodetic observations of Nazca-South America convergence across the central Andes, Science, 279, 358–362, doi:10.1126/science.279.5349.358.[CrossRef] Norabuena, E. O., et al. (2004), Geodetic and seismic constraints on some seismogenic zone processes in Costa Rica, J. Geophys. Res., 109, B11403, doi:10.1029/2003JB002931.[AGU] Oleskevich, D. A., R. D. Hyndman, and K. Wang (1999), The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, J. Geophys. Res., 104(B7), 14,965–14,991, doi:10.1029/1999JB900060.[AGU] Pacheco, J., and L. Sykes (1992), Seismic moment catalog for large shallow earthquakes from 1900 to 1989, Bull. Seismol. Soc. Am., 82, 1306–1349. Pacheco, J. F., L. R. Sykes, and C. H. Scholz (1993), Nature of seismic coupling along simple plate boundaries of the subduction type, J. Geophys. Res., 98, 14,133–14,159, doi:10.1029/93JB00349.[AGU] Peacock, S., and R. D. Hyndman (1999), Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett., 26, 2517–2520.[AGU] Peterson, E. T., and T. Seno (1984), Factors affecting seismic moment release rates in subduction zones, J. Geophys. Res., 89, 10,233–10,248, doi:10.1029/JB089iB12p10233.[AGU] Reinen, T., E. Tullis, and J. D. Weeks (1992), Two-mechanism model for frictional sliding of serpentinite, Geophys. Res. Lett., 19, 1535–1538, doi:10.1029/92GL01388.[AGU] Rice, J. R. (1993), Spatiotemporal complexity of slip on a fault, J. Geophys. Res., 98(B6), 9885–9907, doi:10.1029/93JB00191.[AGU] Rosenau, M., and O. Oncken (2010), Shocks in a box 3D: Experimental insights into seismotectonic segmentation and synchronization of megathrust earthquakes in subduction zones, paper presented at GeoMod 2010, Fac. of Sci., Univ. of Lisbon, Lisbon. Ruff, L. J. (1989), Do trench sediments affect great earthquake occurrence in subduction zones?, in Subduction Zones Part I, edited by L. J. Ruff and H. Kanamori, Pure Appl. Geophys., 129, 263–282. Ruff, L. J. (1996), Large earthquakes in subduction zones: Segment interaction and recurrence times, in Subduction: Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 91–104, AGU, Washington, D. C. Ruff, L. J., and H. Kanamori (1980), Seismicity and the subduction process, Phys. Earth Planet. Inter., 23, 240–252, doi:10.1016/0031-9201(80)90117-X.[CrossRef] Ruff, L. J., and B. W. Tichelaar (1996), What control the seismogenic plate interface in subduction zones?, in Subduction: Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 105–111, AGU, Washington, D. C. Ruppert, N. A., J. M. Lees, N. P. Kozyreva (2007), Seismicity, earthquakes and structure along the Alaska-Aleutian and Kamchatka-Kutile subduction zones: A review, in Volcanism and Subduction: The Kamchatka Region, Geophys. Monogr. Ser., vol. 172, edited by J. Eichelberger et al., pp. 129–144, doi:10.1029/172GM12, AGU, Washington, D. C. Satake, K. (1993), Depth distribution of coseismic slip along the Nankai Through, Japan, from joint inversion of geodetic and tsunami data, J. Geophys. Res., 98, 4553–4565, doi:10.1029/92JB01553.[AGU] Satake, K., and B. F. Atwater (2007), Long-term perspectives on giant earthquakes and tsunamis at subduction zones, Annu. Rev. Earth Planet. Sci. Lett., 35, 349–374.[CrossRef] Satake, K., K. Wang, and B. F. Atwater (2003), Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions, J. Geophys. Res., 108(B11), 2535, doi:10.1029/2003JB002521.[AGU] Savage, J. C. (1983), A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88, 4984–4996, doi:10.1029/JB088iB06p04984.[AGU] Schellart, W. P. (2008), Overriding plate shortening and extension above subduction zones: A parametric study to explain formation of the Andes Mountains, Geol. Soc. Am. Bull., 120(11), 1441–1454, doi:10.1130/B26360.1.[CrossRef] Schellart, W. P., D. J. Freeman, A. Stegman, L. Moresi, and D. May (2007), Evolution and diversity of subduction zones controlled by slab width, Nature, 446, 308–311, doi:10.1038/nature05615.[CrossRef] Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 429 pp., Cambridge Univ. Press, Cambridge, U. K. Scholz, C. H., and J. Campos (1995), On the mechanism of seismic decoupling and back-arc spreading at subduction zones, J. Geophys. Res., 100, 22,103–22,115, doi:10.1029/95JB01869.[AGU] Scholz, C. H., and C. Small (1997), The effect of seamounts subduction on seismic coupling, Geology, 25, 487–490, doi:10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2.[CrossRef] Schwartz, S. Y., and H. R. DeShon (2007), Distinct up-dip limits to geodetic locking and microseismicity at the northern Costa Rica seismogenic zone: Evidence for two mechanical transitions, in The Seismogenic Zone of Subduction Thrust Faults, edited by T. Dixon and J. C. Moore, pp. 576–599, Columbia Univ. Press, New York. Schwartz, S. Y., T. Lay, and L. J. Ruff (1989), Source process of the great 1971 Solomon Islands doublet, Phys. Earth Planet. Inter., 56(3–4), 294–310, doi:10.1016/0031-9201(89)90164-7.[CrossRef] Seno, T. (2003), Fractal asperities, invasion of barriers, and interface earthquakes, Earth Planets Space, 55(11), 649–665. Seno, T. (2005), Variation of downdip limit of the seismogenic zone near the Japanese islands: Implications for the serpentinization mechanism of the fore-arc mantle wedge, Earth Planet. Sci. Lett., 231, 249–262, doi:10.1016/j.epsl.2004.12.027.[CrossRef] Siebert, L., and T. Simkin (2002), Volcanoes of the world: An illustrated catalog of Holocene volcanoes and their eruptions, Global Volcanism Program Digital Inf. Ser., GVP-3, Smithsonian Inst., Washington, D. C. (Available at http://www.volcano.si.edu/world/) Stein, S., and E. A. Okal (2007), Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process, Bull. Seismol. Soc. Am., 97(1A), S279–S295, doi:10.1785/0120050617.[CrossRef] Thatcher, W. (1990), Order and diversity in the modes of circum-Pacific earthquakes recurrence, J. Geophys. Res., 95, 2609–2623, doi:10.1029/JB095iB03p02609.[AGU] Thatcher, W., and J. B. Rundle (1984), A viscoelastic coupling model for cyclic deformation due to periodically repeated earthquakes at subduction zones, J. Geophys. Res., 89, 7631–7640, doi:10.1029/JB089iB09p07631.[AGU] Tichelaar, B. W., and L. J. Ruff (1993), Depth of seismic coupling along subduction zones, J. Geophys. Res., 98, 2017–2037, doi:10.1029/92JB02045.[AGU] Uyeda, S., and H. Kanamori (1979), Back-arc opening and the mode of subduction, J. Geophys. Res., 84, 1049–1061, doi:10.1029/JB084iB03p01049.[AGU] Vrolijk, P. (1990), On the mechanical role of smectite in subduction zones, Geology, 18(8), 703–707, doi:10.1130/0091-7613(1990)018<0703:OTMROS>2.3.CO;2.[CrossRef] Wada, I., and K. Wang (2009), Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, Q10009, doi:10.1029/2009GC002570.[AGU] Wang, K., T. Mulder, G. C. Rogers, and R. D. Hyndman (1995), Case for very low coupling stress on the Cascadia subduction fault, J. Geophys. Res., 100, 12,907–12,918, doi:10.1029/95JB00516.[AGU] Wu, B., C. P. Conrad, A. Heuret, C. Lithgow-Bertelloni, and S. Lallemand (2008), Reconciling strong slab pull and weak plate bending: The plate motion constraint on the strength of mantle slabs, Earth Planet. Sci. Lett., 272, 412–421, doi:10.1016/j.epsl.2008.05.009.[CrossRef]en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorHeuret, A.en
dc.contributor.authorLallemand, S.en
dc.contributor.authorFuniciello, F.en
dc.contributor.authorPiromallo, C.en
dc.contributor.authorFaccenna, C.en
dc.contributor.departmentUniv Roma Treen
dc.contributor.departmentUniv Montpellieren
dc.contributor.departmentUniv Roma Treen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniv Roma Treen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptGéosciences Montpellier, CNRS, Montpellier 2 University, France-
crisitem.author.deptDipartimento di Scienze Geologiche, Universita` degli Studi ‘‘Roma Tre,’’ Rome, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.orcid0000-0003-1924-9423-
crisitem.author.orcid0000-0003-3478-5128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Heuret_etal_2011.pdfMain article2.68 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

87
checked on Feb 10, 2021

Page view(s)

367
checked on Apr 13, 2024

Download(s)

27
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric