Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7244
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallIezzi, G.; Università G. d’Annunzioen
dc.contributor.authorallIarocci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHeap, M.; LMU, University of Munichen
dc.contributor.authorallDingwell, D.; LMU, University of Munichen
dc.date.accessioned2011-12-20T13:22:03Zen
dc.date.available2011-12-20T13:22:03Zen
dc.date.issued2011-03-18en
dc.identifier.urihttp://hdl.handle.net/2122/7244en
dc.description.abstractEdifice instability, that can result in catastrophic flank collapse, is a fundamental volcanic hazard. The subvolcanic basement can encourage such instability, especially if it is susceptible to mechanical weakening by devolatilization reactions near magmatic temperatures. For this reason, understanding how the physical and chemical properties of representative lithologies deteriorate at high temperatures is potentially highly relevant for volcanic hazard mitigation. This is particularly true for sedimentary rock, commonly found underlying volcanic edifices worldwide, that undergo rapid deterioration even under modest temperatures. Therefore, here we present the first experimental study of devolatilization reactions, induced by magmatic temperatures, on sedimentary rock comprising a subvolcanic basement. Our results show that, for a marly limestone representative of the basement at Mt Etna, devolatilization reactions, namely the dehydroxylation of clay minerals and the decarbonation of calcium carbonate, result in a dramatic reduction of mechanical strength and seismic velocities. These temperature-driven reactions can promote volcanic instability at stresses much lower than previously estimated.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/186 (2011)en
dc.subjectPhase transitionsen
dc.subjectExperimental volcanismen
dc.titleVolcanic edifice weakening via devolatilization reactionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1073–1077en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.identifier.doi10.1111/j.1365-246X.2011.05097.xen
dc.relation.referencesAllard, P. et al., 2006. Mount Etna 1993–2005: anatomy of an evolving eruptive cycle, Earth Sci. Rev., 78, 85–114. Battaglia, M. et al., 2010. Dike emplacement and flank instability at Mount Etna: constraints from a poro-elastic-model of flank collapse, J. Volc. Geotherm. Res., 199, 153–164. Bonaccorso, A. et al., 2010. Dike deflection modelling for inferring magma pressure andwithdrawal, with application to Etna 2001 case, Earth planet. Sci. Lett., 293, 121–129. Borgia, A., Ferrari, L. & Pasquar`e G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231–235. Borgia, A., Delaney, P.T. & Denlinger, R.P., 2000. Spreading volcanoes, Annu. Rev. Earth planet. Sci., 28, 539–570. Catalano, S., Torrisi, S. & Ferlito C., 2004. The relationship between late Quaternary deformation and volcanism of Mt. Etna (eastern Sicily): new evidence from the sedimentary substratum in the Catania region, J. Volc. Geotherm. Res., 132, 311–334. Civetta, L. et al., 2004. Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius, J. Volc. Geotherm. Res., 133, 1–12. Del Gaudio P. et al., 2010. Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes, Chem. Geol., 270, 164–178. Del Negro, C., Currenti, G. & Scandura, D., 2009. Temperature-dependent viscoelastic modeling of ground deformation: application to Etna volcano during the 1993–1997 inflation period, Phys. Earth planet. Inter., 172, 299–309. Girard, J.-P. & Savin, S.M., 1996. Intracrystalline fractionation of oxygen isotopes between hydroxyl and non hydroxyl sites in kaolinite measured by thermal dehydroxylation and partial fluorination, Geochim. cosmochim. Acta., 60, 469–486. Heap,M.J., Vinciguerra, S. &Meredith, P.G., 2009. The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna, Tectonophysics, 471, 153–160. Heap, M.J. et al., 2011. Brittle creep in basalt and its application to timedependent volcano deformation, Earth planet. Sci. Lett., 307, 71–82, doi:10.1016/j.epsl.2011.04.035. Lundgren, P. et al., 2004. Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Merle, O., Barde-Cabusson, S.&vanWyk de Vries, B., 2010. Hydrothermal calderas, Bull. Volcanol., 72, 131–147. Molina, I. et al., 2005. Three-dimensional P-wave velocity structure of Tungurahua Volcano, Ecuador, J. Volc. Geotherm. Res., 147, 144–156. Mollo, S. et al., 2010a. Carbonate assimilation in magmas: a reappraisal based on experimental petrology, Lithos, 114, 503–514. Mollo S. et al., 2010b. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry, Lithos, 118, 302–312. Mollo, S. et al., 2011. Plagioclase-melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry, Lithos, 125, 221–235, doi:10.1016/j.lithos.2011.02.008. Palchik, V., 1999. Influence of porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones, Rock Mech. Rock Eng., 32, 303–309.Palchik, V. & Hatzor, Y.H., 2004. The influence of porosity on tensile and compressive strength of porous chalks, Rock Mech. Rock Eng., 37, 331–341. Patan`e, D. et al., 2006. Time-resolved seismic tomography detects magma intrusions at Mount Etna, Science, 313, 821–823. Sack, R.O. & Ghiorso, M.S., 1994. Thermodynamics of multicomponent pyroxenes: I. Formulation of a general model, Contrib. Mineral. Petrol., 116, 277–286. Samtani, M., Dollimore, D. & Alexander, K.S., 2002. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters, Thermochim Acta, 392–393, 135–145, doi:10.1016/S0040-6031(02)00094-1. Siebert, L., 1992. Volcano hazards-threats from debris avalanches, Nature, 356, 658–659. Siniscalchi, A. et al. 2010. Insights into fluid circulation across the Pernicana Fault (Mt. Enta, Italy) and implications for flank instability, J. Volc. Geotherm. Res., 193, 137–142. Tibaldi, A.&Groppelli, G., 2002. Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115, 277–302. Tschegg, C., Ntaflos, T. & Hein I., 2009. Thermally triggered two-stage reaction of carbonates and clay during ceramic firing: a case study on Bronze Age Cypriot ceramics, Appl. Clay Sci., 43, 69–78. Vinciguerra, S. et al., 2005. Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. Sci., 42, 900–910. van Wyk de Vries, B. & Borgia A., 1996. The role of basement in volcano deformation, Geol. Soc. London Spec. Pub., 110, 95–110. van Wyk de Vries, B. & Francis P.W., 1997. Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading, Nature, 387, 387– 390. Wohletz, K., Civetta, L. & Orsi, G., 1999. Thermal evolution of the Phlegraean magmatic system, J. Volc. Geotherm. Res., 91, 381–414. Yavuz, H., Demirdag S. & Caran, S., 2010. Thermal effect on the physical properties of carbonate rocks, Int. J. Rock Mech. Min. Sci., 47, 94–103.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMollo, S.en
dc.contributor.authorVinciguerra, S.en
dc.contributor.authorIezzi, G.en
dc.contributor.authorIarocci, A.en
dc.contributor.authorScarlato, P.en
dc.contributor.authorHeap, M.en
dc.contributor.authorDingwell, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità G. d’Annunzioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentLMU, University of Munichen
dc.contributor.departmentLMU, University of Munichen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità degli studi G. D'annunzio, Chieti Pescara, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUCL,UK-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.orcid0000-0002-8369-4022-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2_Mollo et al. 2011_GJI_186_1073-1077.pdfMain article299.01 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

34
checked on Feb 10, 2021

Page view(s)

202
checked on Mar 27, 2024

Download(s)

26
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric