Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7243
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLanzafame, G.; Università di Cataniaen
dc.contributor.authorallMasotta, M.; Sapienza Università di Romaen
dc.contributor.authorallIezzi, G.; Università G. d'Annunzioen
dc.contributor.authorallFerlito, C.; Università di Cataniaen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-12-20T13:21:00Zen
dc.date.available2011-12-20T13:21:00Zen
dc.date.issued2011-07-07en
dc.identifier.urihttp://hdl.handle.net/2122/7243en
dc.description.abstractSeven rock samples were systematically collected from innermost to the outermost portion of a dike outcropping at Mt. Etna volcano. Results show that, from dike core-to-rim, plagioclase, clinopyroxene and titanomagnetite show compositional variations due to increasing cooling rate. Plagioclase is progressively enriched in An from innermost to the outermost part of the dike. Similarly, clinopyroxene components En+ CaTs+CaFeTs increase, whereas Di+Hd decrease. The Usp content in titanomagnetite also systematically decrease from dike core-to-rim. Partition coefficients and thermometers based on the crystal-liquid exchange reaction indicate that, due to rapid cooling rates at the dike outer portions, early-formed crystal nuclei do not re-equilibrate with the melt. The chemistry of minerals progressively deviates from that of equilibrium; consequently, from dike core-to-rim, mineral compositions resemble those of high-temperature formation. The chemical variations of clinopyroxene and plagioclase in dike samples mirror those obtained from cooling experiments carried out on alkaline basalts. Accordingly, we used an experimental equation based on clinopyroxene compositional variation as a function of cooling rate to determine the cooling conditions experienced by the crystals during dike emplacement. The estimated cooling rates are comparable to those predicted by thermal modeling based on an explicit finite-difference scheme.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/288 (2011)en
dc.subjectdikeen
dc.subjectclinopyroxeneen
dc.titleCooling history of a dike as revealed by mineral chemistry: A case study from Mt. Etna volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber39-52en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.1016/j.chemgeo.2011.06.016en
dc.relation.referencesBaginski, B., Dzierzanowski, P., Macdonald, R., Upton, B.G.J., 2009. Complex relationships among coexisting pyroxenes: the Paleogene Eskdalemuir dyke. Scotland. Mineral. Mag. 73, 929–942. Berndt, J., Koepke, J., Holtz, F., 2005. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J. Petrol. 46, 135–167. Blundy, J., Cashman, K., Humphreys, M., 2006. Magma heating by decompressiondriven crystallization beneath andesite volcanoes. Nature 443, 76–80. Brugger, C.R., Hammer, J.E., 2010. Crystallization kinetics in continuous decompression experiments; implications for interpreting natural magma ascent processes. J. Petrol. 51, 1941–1965. Chistyakova, S., Latypov, R., 2009. On the development of internal chemical zonation in small mafic dykes. Geol. Mag. 147, 1–12. Coish, R.A., Taylor, L.A., 1979. The effect of cooling rate on texture and pyroxene chemistry in DSDP Leg 34 basalt: a microprobe study. Earth Planet. Sci. Lett. 42, 389–398. Conte, A., Perinelli, C., Trigila, R., 2006. Cooling kinetics experiments on different Stromboli lavas: effects on crystal morphologies and phase composition. J. Volcanol. Geoth. Res. 155, 179–200. Corsaro, R.A., Pompilio, M., 2004. Buoyancy-controlled eruption of magmas at Mt Etna. Terra Nova 16 (1), 16–22. Corsaro, R.A., Civetta, L., Di Renzo, V., Miraglia, L., 2009. Petrology of lavas from the 2004–2005 flank eruption of Mt. Etna, Italy: inferences on the dynamics of magma in the shallow plumbing system. Bull. Volcanol. 71, 781–793. Danyushevsky, L.V., 2001. The effect of small amounts of H2O on crystallisation of midocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 110, 265–280. Deer, W.A., Howie, R.A., Zussman, J., 2001. Framework Silicates: Feldspars, second edition. The Geological Society, London. Del Gaudio, P., Mollo, S., Ventura, G., Iezzi, G., Taddeucci, J., Cavallo, A., 2010. Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chem. Geol. 270, 164–178. Etzel, K., Benisek, A., Dachs, E., Cemic, L., 2007. Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: I. Volume and heat capacity of mixing. Phys. Chem. Miner. 34, 733–746.Ferlito, C., Lanzafame, G., 2010. The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119, 642–650. Ferlito, C., Nicotra, E., 2010. The dyke swarm of Mount Calanna (Etna, Italy): an example of the uppermost portion of a volcanic plumbing system. Bull. Volcanol. 72 (10), 1191–1207. Ferlito, C., Viccaro, M., Cristofolini, R., 2008. Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption. Bull. Volcanol. 70, 455–473. Ferlito, C., Coltorti, M., Cristofolini, R., Giacomoni, P.P., 2009. The contemporaneous emission of low-K and high-K trachybasalts and the role of the NE Rift during the 2002 eruptive event, Mt. Etna, Italy. Bull. Volcanol. 71, 575–587. France, L., Ildefonse, B., Koepke, J., Bech, F., 2010. A new method to estimate the oxidation state of basaltic series from microprobe analyses. J. Volcanol. Geotherm. Res. 189, 340–346. Franzini, M., Leoni, L., 1972. A full matrix correction in X-ray fluorescence analysis of rock samples. Atti. Soc. Tosc. Sci. Nat., Mem., Ser. A 79, 7–22. Gamble, R.P., Taylor, L.A., 1980. Crystal/liquid partitioning in augite: effects of cooling rate. Earth Plan. Sci. Lett. 47, 21–33. Gerlach, T.M., 1993. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt. Geochim. Cosmochim. Acta 57, 795–814. Ghiorso, M.S., Sack, R.O., 1995. Chemical mass-transfer in magmatic processes 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquidus–solid equilbria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212. Gibb, F.G.F., 1971. Crystal–liquid relationships in some ultrabasic dykes and their petrological significance. Contrib. Mineral. Petrol. 30, 103–118. Gottsmann, J., Harris, A.J.L., Dingwell, D.B., 2004. Thermal history of Hawaiian pahoehoe lava crusts at the glass transition: implications for flow rheology and emplacement. Earth Planet. Sci. Lett. 228, 343–353. Grove, T.L., Bence, A.E., 1977. Experimental study of pyroxene–liquid interaction in quartz-normative basalt 15597. Proceedings of Lunar and Planetary Science Conference, 8th, pp. 1549–1579. Grove, T.L., Bence, A.E., 1979. Crystallization kinetics in a multiply saturated basalt magma: an experimental study of Luna 24 ferrobasalt. Proceedings of Lunar and Planetary Science Conference, 10th, pp. 439–478. Grove, T.L., Raudsepp, M., 1978. Effects of kinetics on the crystallization of quartznormative basalt 15597: an experimental study. Proceedings of Lunar and Planetary Science Conference, 9th, pp. 585–599. Grove, T.L., Gerlach, D.C., Sando, T.W., 1982. Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contrib. Mineral. Petrol. 80, 160–182. Hammer, J.E., 2006. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth Planet. Sci. Lett. 248, 618–637. Hammer, J.E., 2008. Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka, K.D., Tepley, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes: Rev. Mineral. Geochem., 69, pp. 9–59. Hammond, P.A., Taylor, L.A., 1982. The ilmenite-titanomagnetite assemblage: kinetics of re-equilibration. Earth Planet. Sci. Lett. 61, 143–150. Heap, M.J., Vinciguerra, S., Meredith, P.G., 2009. The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 471, 153–160. Heap, M.J., Baud, P., Meredith, G., Vinciguerra, S., Bell, A.F., Main, I.G., 2011. Brittle creep in basalt and its application to time-dependent volcano deformation. Earth Plan. Sci. Lett. 307, 71–82. doi:10.1016/j.epsl.2011.04.035. Iezzi, G., Mollo, S., Ventura, G., Cavallo, A., Romano, C., 2008. Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem. Geol. 253, 91–101. Iezzi, G., Mollo, S., Torresi, G., Ventura, G., Cavallo, A., Scarlato, P., 2011. Experimental solidification of an andesitic melt by cooling. Chem. Geol. doi:10.1016/ j.chemgeo.2011.01.024. Kirkpatrick, R.J., 1975. Crystal growth from the melt: a review. Am. Mineral. 60, 798–814. Kress, V.C., Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92. Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3- TiO2-SiO2, liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 53, 2195–2204. Lange, R.A., Carmichael, I.S.E., 1996. The Aurora volcanic field, California-Nevada: oxygen fugacity constraints on the development of andesitic magma. Contrib. Mineral. Petrol. 125, 167–185. Lange, R.A., Frey, H.M., Hector, J., 2009. A thermodynamic model for the plagioclaseliquid hygrometer/thermometer. Am. Mineral. 94, 494–506. Latypov, R., Hanski, E., Lavrenchuk, A., Huhma, H., Havela, T., 2011. A‘three-increase model’ for the origin of the marginal reversal of the Koitelainen layered intrusion, Finland. J. Petrol. 52, 733–764. Lofgren, G.E., Huss, G.R., Wasserburg, G.J., 2006. An experimental study of traceelement partitioning between Ti–Al–clinopyroxene and melt: equilibrium and kinetic effects including sector zoning. Am. Mineral. 91, 1596–1606. Longhi, J., Walker, D., Hays, J.F., 1976. Fe and Mg in plagioclase. Proceedings of the Lunar Science Conference, 7th, pp. 1281–1300. Loomis, T.P., Welber, P.W., 1982. Crystallization processes in the Rocky Hill Sanodiorite pluton, California: an interpretation based on compositional zoning of plagioclase. Contrib. Mineral. Petrol. 81, 230–239. Mahood, G.A., Baker, D.R., 1986. Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contrib. Mineral. Petrol. 93, 251–264.Mathez, E.A., 1984. Influence of degassing on oxidation states of basaltic magmas. Nature 310, 371–375. Métrich, N., Rutherford, M.J., 1998. Low pressure crystallization paths of H2O-saturated basaltic-hawaiitic melts from Mt Etna: implications for open-system degassing of basaltic volcanoes. Geochim. Cosmochim. Acta 62, 1195–1205. Mevel, C., Velde, D., 1976. Clinopyroxenes in Mesozoic pillow lavas from the French Alps: influence of cooling rate on compositional trends. Earth Planet. Sci. Lett. 32, 158–164. Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., Scarlato, P., 2010. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118, 302–312. Mollo, S., Putirka, K., Del Gaudio, P., Scarlato, P., in press-a. Plagioclase-melt (dis) equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos. doi:10.1016/j.lithos.2011.02.008. Mollo, S., Vinciguerra, S., Iezzi, G., Iarocci, A., Scarlato, P., Heap, M.J., Dingwell, D.B., in press-b. Volcanic edifice weakening via devolatilisation reactions. Geophys. J. Int. doi:10.1111/j.1365-246X.2011.05097.x. Morimoto, N., 1988. Nomenclature of pyroxenes. Mineral. Mag. 52, 535–550. Muñoz, M., Sagredo, J., 1974. Clinopyroxenes as geobarometric indicators in mafic and ultramafic rocks from Canary Islands. Contrib. Mineral. Petrol. 44, 139–147. Mysen, B.O., Richet, P., 2005. Silicate Glasses and Melts: Properties and Structure. Elsevier, Amsterdam. Nakada, S., Motomura, Y., 1999. Petrology of the 1991–1995 eruption at Unzen: effusion pulsation and groundmass crystallization. J. Volcanol. Geotherm. Res. 89, 173–196. Nakamura, M., 1995. Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. Geology 23, 807–810. Phinney, W.C., 1992. Partitioning coefficients for iron between plagioclase and basalt as a function of oxygen fugacity: implications for Archean and lunar anorthosites. Geochim. Cosmochim. Acta 56, 1885–1895. Pietranik, A., Koepke, J., Puziewicz, J., 2006. The study of crystallization and resorption in plutonic plagioclase: implications on evolution of granodiorite magma (Gęsiniec Granodiorite, Strzelin Crystalline Massif, SW Poland). Lithos 86, 260–280. Potuzak, M., Dingwell, D.B., 2001. Temperature-dependent thermal expansivities of multicomponent natural melts between 993 and 1803 K. Chem. Geol. 229, 10–27. Putirka, K., 1999. Clinopyroxene+liquid equilibria. Contrib.Mineral. Petrol. 135, 151–163. Putirka, K., 2005. Igneous thermometers and barometers based on plagioclase+liquid equilibria: test of some existing models and new calibrations. Am. Mineral. 90, 336–346. Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. In: Putirka, K.D., Tepley, F. (Eds.), Minerals, Inclusions, and Volcanic Processes: Rev. in Mineral: Geochem., 69, pp. 61–120. Putirka, K., Johnson, M., Kinzler, R., Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene–liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 123, 92–108. Putirka, K., Ryerson, F.J., Mikaelian, H., 2003. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene+liquid equilibria. Am. Mineral. 88, 1542–1554. Roeder, P.L., Emslie, R.F., 1970. Olivine–liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–289. Ryabchikov, I.D., Kogarko, L.N., 2006. Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos 91, 35–45. Sisson, T.W., Grove, T.L., 1993. Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 113, 143–166. Smith, C.B., 1983. Pb, Sr and Nd isotopic evidence for sources of Southern African Cretaceous kimberlites. Nature 30, 51–54. Smith, J.V., Brown,W.L., 1988. FeldsparMinerals: 1. Crystal Structures, Physical, Chemical, and Microtextural Properties, 2nd edition. Springer-Verlag, New York. 828 pp. Smith, D., Lindsley, D.H., 1971. Stable and metastable augite crystallization trends in a single basalt flow. Am. Mineral. 56, 225–233. Smith, B.M., Prévot, M., 1977. Variation of the magnetic properties in a basaltic dyke with concentric cooling zones. Phys. Earth Planet. Inter. 14, 120–136. Stormer, J.C., 1983. The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron–titanium oxides. Am. Mineral. 68, 586–594. Sugawara, T., 2001. Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications. Contrib. Mineral. Petrol. 141, 659–686. Tanguy, J.C., Condomines, M., Kieffer, G., 1997. Evolution of the Mount Etna magma: constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geotherm. Res. 75, 221–250. Tegner, C., 1997. Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contrib. Mineral. Petrol. 128, 45–51. Toplis, M.J., 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib. Mineral. Petrol. 149, 22–39. Ujike, O., 1982. Microprobe mineralogy of plagioclase, clinopyroxene and amphibole as records of cooling rate in the Shirotori-Hiketa dike swarm, northeastern Shikoku, Japan. Lithos 15, 281–293. Ussler III, W., Glazner, A.F., 1989. Phase equilibria along a basalt-rhyolite mixing line: implications for the origin of calc-alkaline intermediate rocks. Contrib. Mineral. Petrol. 101, 232–244. Venezky, D.Y., Rutherford, M.J., 1997. Preeruption conditions and timing of dacite–andesite magma mixing in the 2.2 ka eruption at Mount Rainier. J. Geophys. Res. 102, 20069–20086.Viccaro, M., Ferlito, C., Cortesogno, L., Cristofolini, R., Gaggero, L., 2006. Magma mixing during the 2001 event at Mount Etna (Italy): effect on the eruptive dynamics. J. Volcanol. Geotherm. Res. 149, 139–159. Whittington, A.G., Hofmeister, A.M., Nabelek, P.I., 2009. Temperature-dependent Thermal Diffusivity of the Earth's Crust and Implications for Magmatism. Wilding, M.C., Webb, S.L., Dingwell, D.B., 1995. Evaluation of a relaxation geospeedometer for volcanic glasses. Chem. Geol. 125, 137–148. Wohletz, K.H., Orsi, G., Civetta, L., 1999. Thermal evolution of the Phlegraean magmatic system. J. Volcanol. Geotherm. Res. 91, 381–414. Zhou, W., Van der Voo, R., Peacor, D.R., Zhang, Y., 2000. Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet. Sci. Lett. 179, 9–20.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMollo, S.en
dc.contributor.authorLanzafame, G.en
dc.contributor.authorMasotta, M.en
dc.contributor.authorIezzi, G.en
dc.contributor.authorFerlito, C.en
dc.contributor.authorScarlato, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità di Cataniaen
dc.contributor.departmentSapienza Università di Romaen
dc.contributor.departmentUniversità G. d'Annunzioen
dc.contributor.departmentUniversità di Cataniaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptDipartimento di Scienze della Terra, Sapienza—Universita` di Roma,-
crisitem.author.deptUniversità degli studi G. D'annunzio, Chieti Pescara, Italy-
crisitem.author.deptDip. Scienze Geologiche, Università di Catania-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1_Mollo et al. 2011_Chemical Geology_288_39-52.pdfMain article1.73 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

28
checked on Feb 10, 2021

Page view(s) 50

216
checked on Apr 24, 2024

Download(s)

29
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric