Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7176
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMacrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallLucchi, R.; Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, Sgonico, Trieste I‐34010, Italyen
dc.contributor.authorallRebesco, M.; Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, Sgonico, Trieste I‐34010, Italyen
dc.contributor.authorallCamerlenghi, A.; Istitució Catalana de Recerca i Estudis Avançats, E‐08028 Barcelona, Spainen
dc.date.accessioned2011-11-03T09:39:31Zen
dc.date.available2011-11-03T09:39:31Zen
dc.date.issued2011-11-01en
dc.identifier.urihttp://hdl.handle.net/2122/7176en
dc.description.abstractA high‐resolution paleomagnetic and rock magnetic study has been carried out on sediment cores collected in glaciomarine silty‐clay sequences from the continental shelf and slope of the southern Storfjorden trough‐mouth fan, on the northwestern Barents Sea continental margin. The Storfjorden sedimentary system was investigated during the SVAIS and EGLACOM cruises, when 10 gravity cores, with a variable length from 1.03 m to 6.41 m, were retrieved. Accelerator mass spectrometry (AMS) 14C analyses on 24 samples indicate that the cores span a time interval that includes the Holocene, the last deglaciation phase and in some cores the last glacial maximum. The sediments carry a well‐defined characteristic remanent magnetization and have a valuable potential to reconstruct the paleosecular variation (PSV) of the geomagnetic field, including relative paleointensity (RPI) variations. The paleomagnetic data allow reconstruction of past dynamics and amplitude of the geomagnetic field variations at high northern latitudes (75°–76° N). At the same time, the rock magnetic and paleomagnetic data allow a high‐resolution correlation of the sedimentary sequences and a refinement of their preliminary age models. The Holocene PSV and RPI records appear particularly sound, since they are consistent between cores and they can be correlated to the closest regional stacking curves (UK PSV, FENNOSTACK and FENNORPIS) and global geomagnetic model for the last 7 ka (CALS7k.2). The computed amplitude of secular variation is lower than that outlined by some geomagnetic field models, suggesting that it has been almost independent from latitude during the Holocene.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry Geophysics Geosystemsen
dc.relation.ispartofseries11/12 (2011)en
dc.subjectBarents Seaen
dc.subjectHoloceneen
dc.subjectStorfjordenen
dc.subjectgeomagnetic paleosecular variationen
dc.subjectrelative paleointensityen
dc.titleA Holocene paleosecular variation record from the northwestern Barents Sea continental marginen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ11Z33en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theoryen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic fielden
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1029/2011GC003810en
dc.relation.referencesBarletta, F., G. St‐Onge, J. E. T. Channell, A. Rochon, L. Polyak, and D. Darby (2008), High‐resolution paleomagnetic secular variation and relative paleointensity records from the western Canadian Arctic: Implication for the Holocene stratigraphy and geomagnetic field behavior, Can. J. Earth Sci., 45, 1265–1281, doi:10.1139/E08-039. Barletta, F., G. St‐Onge, J. E. T. Channell, and A. Rochon (2010a), Dating of Holocene western Canadian Arctic sediments by matching paleomagnetic secular variation to a geomagnetic field model, Quat. Sci. Rev., 29, 2315–2324, doi:10.1016/j.quascirev.2010.05.035. Barletta, F., G. St‐Onge, J. S. Stoner, P. Lajeunesse, and J. Locat (2010b), A high‐resolution Holocene paleomagnetic secular variation and relative paleointensity stack from eastern Canada, Earth Planet. Sci. Lett., 298, 162–174, doi:10.1016/j. epsl.2010.07.038. Bloxham, J., and D. Gubbins (1985), The secular variation of Earth’s magnetic field, Nature, 317, 777–781, doi:10.1038/ 317777a0. Brachfeld, S. A., G. D. Acton, Y. Guyodo, and S. K. Banerjee (2000), High‐resolution paleomagnetic records from Holocene sediments from the Palmer Deep, western Antarctic Peninsula, Earth Planet. Sci. Lett., 181, 429–441, doi:10.1016/S0012-821X(00)00211-9. Brachfeld, S. A., E. W. Domack, C. Kissel, C. Laj, A. Leventer, S. E. Ishman, I. M. Gilbert, A. Camerlenghi, and L. B. Eglinton (2003), Holocene history of the Larsen‐A Ice Shelf constrained by geomagnetic paleointensity dating, Geology, 31, 749–752, doi:10.1130/G19643.1. Brachfeld, S. A., C. Kissel, C. Laj, and A. Mazaud (2004), Viscous behavior of u‐channels during acquisition and demagnetization of remanences: Implications for paleomagnetic and rock‐magnetic investigations, Phys. Earth Planet. Inter., 145, 1–8, doi:10.1016/j.pepi.2003.12.011. Chadima, M., and F. Hrouda (2006), Remasoft 3.0–A userfriendly paleomagnetic data browser and analyzer, Trav. Geophys., XXVII, 20–21. Channell, J. E. T., and C. Xuan (2009), Self‐reversal and apparent magnetic excursions in Arctic sediments, Earth Planet. Sci. Lett., 284, 124–131, doi:10.1016/j.epsl.2009. 04.020. Channell, J. E. T., J. S. Stoner, D. A. Hodell, and C. D. Charles (2000), Geomagnetic paleointensity for the last 100 kyr from the sub‐antarctic South Atlantic: A tool for inter‐hemispheric correlation, Earth Planet. Sci. Lett., 175, 145–160, doi:10.1016/S0012-821X(99)00285-X. Constable, C. G., and R. L. Parker (1988), Statistics of the geomagnetic secular variation for the past 5 m.y, J. Geophys. Res., 93, 11,569–11,581, doi:10.1029/JB093iB10p11569. Creer, K. M., R. Thompson, L. Molyneux, and F. J. H. Mackereth (1972), Geomagnetic secular variation recorded in the stable magnetic remanence of recent sediments, Earth Planet. Sci. Lett., 14, 115–127, doi:10.1016/0012-821X(72) 90090-8. Donadini, F., M. Korte, and C. G. Constable (2009), Geomagnetic field for 0–3 ka: 1. New data sets for global modeling, Geochem. Geophys. Geosyst., 10, Q06007, doi:10.1029/ 2008GC002295. Donadini, F., M. Korte, and C. G. Constable (2010), Millennial variations of the geomagnetic Field: From data recovery to field reconstruction, Space Sci. Rev., 155, 219–246, doi:10.1007/s11214-010-9662-y. Fisher, R. A. (1953), Dispersion on a sphere, Proc. R. Soc. London, Ser. A, 217, 295–305, doi:10.1098/rspa.1953.0064. Hagstrum, J. T., and D. E. Champion (2002), A Holocene paleosecular variation record from 14C‐dated volcanic rocks in western North America, J. Geophys. Res., 107(B1), 2025, doi:10.1029/2001JB000524. Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen (2002), Small‐scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, doi:10.1038/416620a. Jakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H.‐W. Schenke, and P. Johnson (2008), An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses, Geophys. Res. Lett., 35, L07602, doi:10.1029/2008GL033520. Johnson, C. L., et al. (2008), Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows, Geochem. Geophys. Geosyst., 9, Q04032, doi:10.1029/2007GC001696. King, J. W., S. K. Banerjee, J. Marvin, and Ö. Özdemir (1982), A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments, Earth Planet. Sci. Lett., 59, 404–419, doi:10.1016/0012-821X(82)90142-X. King, J. W., S. K. Banerjee, and J. Marvin (1983), A new rock‐magnetic approach to selecting sediments for geomagnetic paleointensity for the last 4000 years, J. Geophys. Res., 88(B7), 5911–5921, doi:10.1029/JB088iB07p05911. Kirschvink, J. L. (1980), The least‐squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718. Korte, M., and C. G. Constable (2005), The geomagnetic dipole moment over the last 7000 years—New results from a global model, Earth Planet. Sci. Lett., 236, 348–358, doi:10.1016/j.epsl.2004.12.031. Korte, M., and M. Mandea (2008), Magnetic poles and dipole tilt variation over the past decades to millennia, Earth Planets Space, 60, 937–948. Korte, M., A. Genevey, C. G. Constable, U. Frank, and E. Schnepp (2005), Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, Q02H15, doi:10.1029/ 2004GC000800. Korte, M., F. Donadini, and C. Constable (2009), Geomagnetic field for 0–3 ka: 2. A new series of time‐varying global models, Geochem. Geophys. Geosyst., 10, Q06008, doi:10.1029/2008GC002297. Lisé‐Pronovost, A., G. St‐Onge, S. Brachfeld, F. Barletta, and D. Darby (2009), Paleomagnetic constraints on the Holocene stratigraphy of the Arctic Alaskan margin, Global Planet. Change, 68(1–2), 85–99. Macrì, P., L. Sagnotti, J. Dinarès‐Turell, and A. Caburlotto (2005), A composite record of Late Pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica), Phys. Earth Planet. Inter., 151, 223–242, doi:10.1016/j.pepi.2005.03.004. Macrì, P., L. Sagnotti, and R. G. Lucchi (2006), A stacked record of relative geomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsula, Earth Planet. Sci. Lett., 252, 162–179, doi:10.1016/ j.epsl.2006.09.037. Macrì, P., L. Sagnotti, J. Dinarès‐Turell, and A. Caburlotto (2010), Relative geomagnetic paleointensity, excursions and the Brunhes‐Matuyama precursor as recorded in a sediment core from Wilkes Land Basin (Antarctica), Phys. Earth Planet. Inter., 179, 72–86, doi:10.1016/j.pepi.2009.12.002. Maher, B. A. (1988), Magnetic properties of some synthetic sub‐micron magnetites, Geophys. J. R. Astron. Soc., 94, 83–96. McElhinny, M. W., and P. L. McFadden (1997), Palaeosecular variation over the past 5 Myr based on a new generalized database, Geophys. J. Int., 131, 240–252, doi:10.1111/ j.1365-246X.1997.tb01219.x. McFadden, P. L., R. T. Merrill, and M. W. McElhinny (1988), Dipole/quadrupole family modelling of paleosecular variation, J. Geophys. Res., 93, 11,583–11,588, doi:10.1029/ JB093iB10p11583. Merrill, R. T., M. W. McElhinny, and P. L. McFadden (1996), The Magnetic Field of the Earth, 531 pp., Academic, San Diego, Calif. Meynadier, L., J.‐P. Valet, R. Weeks, N. J. Shackleton, and V. L. Hagee (1992), Relative geomagnetic intensity of the field during the last 140 ka, Earth Planet. Sci. Lett., 114, 39–57, doi:10.1016/0012-821X(92)90150-T. Nilsson, A., I. Snowball, R. Muscheler, and C. B. Uvo (2010), Holocene geocentric dipole tilt model constrained by sedimentary paleomagnetic data, Geochem. Geophys. Geosyst., 11, Q08018, doi:10.1029/2010GC003118. Noel, M., and C. M. Batt (1990), A method for correcting geographically separated remanence directions for the purpose of archeomagnetic dating, Geophys. J. Int., 102, 753–756, doi:10.1111/j.1365-246X.1990.tb04594.x. Nowaczyk, N. R., and M. Antonow (1997), High resolution magnetostratigraphy of four sediment cores from the Greenland Sea–I. Identification of the Mono Lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events, Geophys. J. Int., 131, 310–324, doi:10.1111/j.1365-246X. 1997.tb01224.x. Nowaczyk, N., and T. Frederichs (1999), Geomagnetic events and relative paleointensity variations during the last 300 ka as recorded in Kolbeinsey Ridge sediments, Iceland Sea, indication for a strongly variable geomagnetic field, Int. J. Earth Sci., 88, 116–131, doi:10.1007/s005310050250. Ohno, M., and Y. Hamano (1993), Global analysis of the geomagnetic field; time variation of the dipole moment and the geomagnetic pole in the Holocene, J. Geomagn. Geoelectr., 45, 1455–1466, doi:10.5636/jgg.45.1455. Olson, P., and J. Aurnou (1999), A polar vortex in the Earth’s core, Nature, 402, 170–173, doi:10.1038/46017. Reimer, P. J., et al. (2009), IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51(4), 1111–1150. Roberts, A. P. (2006), High‐resolution magnetic analysis of sediment cores: Strengths, limitations and strategies for maximizing the value of long‐core magnetic data, Phys. Earth Planet. Inter., 156, 162–178, doi:10.1016/j.pepi.2005. 03.021. Ryan, W. B. F., et al. (2009), Global Multi‐Resolution Topography synthesis, Geochem. Geophys. Geosyst., 10, Q03014, doi:10.1029/2008GC002332. Sagnotti, L., P. Macrí, A. Camerlenghi, and M. Rebesco (2001), Environmental magnetism of Antarctic Late Pleistocene sediments and interhemispheric correlation of climatic events, Earth Planet. Sci. Lett., 192, 65–80, doi:10.1016/ S0012-821X(01)00438-1. Sagnotti, L., P. Rochette, M. Jackson, F. Vadeboin, J. Dinarès‐ Turell, and A. Winkler (2003), “Mag‐Net” Science Team, Inter‐laboratory calibration of low field and anhysteretic susceptibility measurements, Phys. Earth Planet. Inter., 138, 25–38, doi:10.1016/S0031-9201(03)00063-3. Sigmond, E. M. O. (1992), Bedrock map of Norway and adjacent ocean areas, scale 1:3 million, Geol. Surv. of Norway, Trondheim. Snowball, I., L. Zillén, A. Ojala, T. Saarinen, and P. Sandgren (2007), FENNOSTACK and FENNORPIS: Varve dated Holocene paleomagnetic secular variation and relative palaeointensity stacks for Fennoscandia, Earth Planet. Sci. Lett., 255, 106–116, doi:10.1016/j.epsl.2006.12.009. Sreenivasan, B., and C. A. Jones (2005), Structure and dynamics of the polar vortex in the Earth’s core, Geophys. Res. Lett., 32, L20301, doi:10.1029/2005GL023841. Sreenivasan, B., and C. A. Jones (2006), Azimuthal winds, convection and dynamo action in the polar region of the planetary cores, Geophys. Astrophys. Fluid Dyn., 100, 319–339, doi:10.1080/03091920600807864. St‐Onge, G., J. S. Stoner, and C. Hillaire‐Marcel (2003), Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: Centennial to millennial‐scale geomagnetic modulation of cosmogenic isotopes, Earth Planet. Sci. Lett., 209, 113–130, doi:10.1016/S0012-821X(03) 00079-7. Stoner, J. S., J. E. T. Channell, D. A. Hodell, and C. D. Charles (2003), A ∼580 kyr paleomagnetic record from the sub‐ Antarctic South Atlantic (Ocean Drlling Program Site 1089), J. Geophys. Res., 108(B5), 2244, doi:10.1029/2001JB001390. Stuiver, M., and P. J. Reimer (1993), Extended 14C data base and revised Calib 3.0 14C age calibration program, Radiocarbon, 35, 215–230. Tauxe, L. (1993), Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice, Rev. Geophys., 31, 319–354, doi:10.1029/93RG01771. Tauxe, L., and D. Kent (2004), A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? in Timescales of the Internal Geomagnetic Field, Geophys. Monogr. Ser., vol. 145, edited by J. E. T. Channell et al., pp. 101–115, AGU, Washington, D. C. Tauxe, L., and T. Yamazaki (2007), Paleointensities, in Treatise on Geophysics, vol. 5, edited by G. Schubert, pp. 509–563, Elsevier, Oxford, U. K., doi:10.1016/B978-044452748- 6.00098-5. Thompson, R. (1973), Palaeolimnology and palaeomagnetism, Nature, 242, 182–184, doi:10.1038/242182a0. Thompson, R., and D. R. Barraclough (1982), Geomagnetic secular variation based on Spherical harmonic and cross validation analyses of historical and archaeomagnetic data, J. Geomagn. Geoelectr., 34, 245–263, doi:10.5636/jgg. 34.245. Turner, G. M., and R. Thompson (1981), Lake sediment record of the geomagnetic secular variation in Britain during Holocene times, Geophys. J., 65, 703–725, doi:10.1111/j.1365- 246X.1981.tb04879.x. Turner, G. M., and R. Thompson (1982), Detransformation of the British geomagnetic secular variation record for Holocene times, Geophys. J., 70, 789–792. Valet, J. P. (2003), Time Variations in geomagnetic intensity, Rev. Geophys., 41(1), 1004, doi:10.1029/2001RG000104. Valet, J.‐P., and L. Meynadier (1998), A comparison of different techniques for relative paleointensity, Geophys. Res. Lett., 25, 89–92, doi:10.1029/97GL03489. Vandamme, D. (1994), A new method to determine paleosecular variation, Phys. Earth Planet. Inter., 85, 131–142, doi:10.1016/0031-9201(94)90012-4. Verosub, K. L. (1977), Depositional and post‐depositional processes in the magnetization of sediments, Rev. Geophys. Space Phys., 15, 129–143, doi:10.1029/RG015i002p00129. Xuan, C., and J. E. T. Channell (2010), Origin of apparent magnetic excursions in deep‐sea sediments from the Mendeleev‐Alpha Ridge, Arctic Ocean, Geochem. Geophys. Geosyst., 11, Q02003, doi:10.1029/2009GC002879. Zijderveld, J. D. A. (1967), A. C. demagnetization of rocks: Analysis of results, in Methods in Palaeomagnetism, edited by D. W. Collinson, K. M. Creer, and S. K. Runcorn, pp. 254–286, Elsevier, Amsterdam.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorMacrì, P.en
dc.contributor.authorLucchi, R.en
dc.contributor.authorRebesco, M.en
dc.contributor.authorCamerlenghi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, Sgonico, Trieste I‐34010, Italyen
dc.contributor.departmentIstituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, Sgonico, Trieste I‐34010, Italyen
dc.contributor.departmentIstitució Catalana de Recerca i Estudis Avançats, E‐08028 Barcelona, Spainen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010 Sgonico, TS, Italy-
crisitem.author.deptIstituto Nazionale di Oceanografia e di Geofisica Sperimentale-
crisitem.author.deptIstituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italia-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0003-2287-4019-
crisitem.author.orcid0000-0001-5111-6968-
crisitem.author.orcid0000-0002-8128-9533-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011GC003810.pdf4.07 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

14
checked on Feb 7, 2021

Page view(s) 5

581
checked on Apr 24, 2024

Download(s) 50

103
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric