Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7167
DC FieldValueLanguage
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSchoell, M.; GasConsult International Inc., Berkeley, USAen
dc.contributor.authorallHosgörmez, H.; Istanbul University, Engineering Faculty, Geology Department, Istanbul, Turkeyen
dc.date.accessioned2011-10-24T12:40:12Zen
dc.date.available2011-10-24T12:40:12Zen
dc.date.issued2011-10en
dc.identifier.urihttp://hdl.handle.net/2122/7167en
dc.description.abstractThe emission of abiotic methane (CH4) into the atmosphere from low temperature serpentinization in ophiolitic rocks is documented to date only in four countries, the Philippines, Oman, New Zealand, and Turkey. Serpentinization produces large amounts of hydrogen (H2) which in theory may react with CO2 or CO to form hydrocarbons (Fischer–Tropsch Type synthesis, FTT). Similar mechanisms have been invoked to explain the CH4 detected on Mars, so that understanding flux and exhalation modality of ophiolitic gas on Earth may contribute to decipher the potential degassing on Mars. This work reports the first direct measurements of gas (CH4, CO2) flux ever done on onshore ophiolites with present-day serpentinization. We investigated the Tekirova ophiolites at Çirali, in Turkey, hosting the Chimaera seep, a system of gas vents issuing from fractures in a 5000 m2 wide ophiolite outcrop. At this site at least 150–190 t of CH4 is annually released into the atmosphere. The molecular and isotopic compositions of C1–C5 alkanes, CO2, and N2 combined with source rock maturity data and thermogenic gas formation modelling suggested a dominant abiotic component (~80– 90%) mixed with thermogenic gas. Abiotic H2-rich gas is likely formed at temperatures below 50 °C, suggested by the low deuterium/hydrogen isotopic ratio of H2 (δDH2: −720‰), consistent with the low geothermal gradient of the area. Abiotic gas synthesis must be very fast and effective in continuously producing an amount of gas equivalent to the long-lasting (N2 millennia) emission of N100 t CH4 yr−1, otherwise pressurised gas accumulation must exist. Over the same ophiolitic formation, 3 km away from Chimaera, we detected an invisible microseepage of abiotic CH4 with fluxes from 0.07 to 1 g m−2 d−1. On Mars similar fluxes could be able to sustain the CH4 plume apparently recognised in the Northern Summer 2003 (104 or 105 t yr−1) over the wide olivine bedrock and outcrops of hydrated silicates in the Syrtis Major and Nili Fossae; just one seep like Chimaera or, more realistically, a weak, spatially sporadic microseepage, would be sufficient to maintain the atmospheric CH4 level on Mars.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries1-2/310 (2011)en
dc.subjectabiotic methaneen
dc.subjectseepageen
dc.subjectserpentinizationen
dc.subjectophiolitesen
dc.subjectMarsen
dc.titleAbiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Marsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber96-104en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.epsl.2011.08.001en
dc.relation.referencesAbrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M., 1988. Methane–hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem. Geol. 71, 211–222. Aldanmaz, E., Schmidt, M.W., Gourgaud, A., Meisel, T., 2009. Mid-ocean ridge and supra-subduction geochemical signatures in spinel-peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113, 691–708. Atreya, S.K., Mahaffy, P.R.,Wong, A.-S., 2007. Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55, 358–369. Bağcı, U., Parlak, O., Höck, V., 2006. Geochemical character and tectonic environment of ultramafic to mafic cumulates from the Tekirova (Antalya) ophiolite (Southern Turkey). Geol. J. 41, 93–219. Barnes, I., LaMarche Jr., V.C., Himmelberg, G.R., 1967. Geochemical evidence of presentday serpentinization. Science 56, 830–832. Barnes, I., O'Neil, J.R., Trescases, J.J., 1978. Present day serpentinization in New Caledonia, Oman, and Yugoslavia. Geochim. Cosmochim. Acta 42, 144–145. Beeskow, B., Treloar, P.J., Rankin, A.H., Vennemann, T.W., Spangenberg, J., 2006. A reassessment of models for hydrocarbon generation in the Khibiny nepheline syenite complex, Kola Peninsula, Russia. Lithos 91, 1–18. Blank, J.G., Green, S.J., Blake, D., Valley, J.W., Kita, N.T., Treiman, A., Dobson, P.F., 2009. An alkaline spring system within the Del Puerto Ophiolite (California, USA): a Mars analog site. Planet. Space Sci. 57, 533–540. Bottinga, Y., 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen– water vapor. Geochim. Cosmochim. Acta 33, 49–64. Bradley, A.S., Summons, R.E., 2010. Multiple origins of methane at the Lost City hydrothermal field. Earth Planet. Sci. Lett. 297, 34–41. Brown, A., 2000. Evaluation of possible gas microseepage mechanisms. Am. Assoc. Petrol. Geol. Bull. 84, 1775–1789. Cardace, D., Hoehler, T.M., Roberts, B.A., Foster, A.L., 2009. Actively serpentinizing seeps in the Bay of Island Ophiolites, Western Newfoundland: a window into the deep biosphere. GSA Abstr. Programs 41 (7), 378. Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field (36°14′N, MAR). Chem. Geol. 191, 345–359. Chung, H.M., Gormly, J.R., Squires, R.M., 1988. Origin of gases hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution. Chem. Geol. 71, 97–103. De Boer, J.Z., Chanton, J., Zeitlhöfler, M., 2007. Homer's chimaera fires (SW of Antalya/ Turkey); burning abiogenic methane gases; are they generated by a serpentinization process related to alkalic magmatism? Geowissenschaftliche 158/4, 997–1003. Delichatsios, M.A., 1990. Procedure for calculating the air entrainment into turbulent pool and jet fires. J. Fire. Prot. Eng. 2, 93–98. Demirel, I.H., Günay, Y., 2000. Tectonic and karstic effects on the Western Taurus Region, Southwestern Turkey: relations to the present temperature gradients and total organic carbon content. Energy Sources 22, 431–441. Ehlmann, B.L., Mustard, J.F., Murchie, S.L., 2010. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201. doi:10.1029/2010GL042596. Etiope, G., 2009. Natural emissions of methane from geological seepage in Europe. Atmos. Environ. 43, 1430–1443. Etiope, G., Klusman, R.W., 2010. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget ofmethane.Global Planet. Change 72, 265–274. Etiope, G., Martinelli, G., 2002. Migration of carrier and trace gases in the geosphere: an overview. Phys. Earth Planet. Inter. 129, 185–204. Etiope, G., Fridriksson, T., Italiano, F., Winiwarter, W., Theloke, J., 2007. Natural emissions of methane from geothermal and volcanic sources in Europe. J. Volcanol. Geotherm. Res. 165, 76–86. Etiope, G., Nakada, R., Tanaka, K., Yoshida, N., 2011a. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4– CO2 fluxes. Appl. Geochem. 26, 348–359. Etiope, G., Oehler, D.Z., Allen, C.C., 2011b. Methane emissions from Earth's degassing: implications for Mars. Planet. Space Sci. 59, 182–195. Fiebig, J., Woodland, A.B., Spangenberg, J., Oschmann, W., 2007. Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim. Cosmochim. Acta 71, 3028–3039. Filipescu, M.N., Humă, I., 1979. Geochemistry of Natural Gases. Academiei R.S.Romania, Publ., House, Bucharest. 175 pp. (in Romanian). Foustoukos, D.I., Seyfried Jr., W.E., 2004. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304, 1002–1005. Fritz, P., Clark, I.D., Fontes, J.-C., Whiticar, M.J., Faber, E., 1992. Deuterium and 13C evidence for low temperature production of hydrogen and methane in a highly alkaline groundwater environment in Oman. In: Kharaka, Y.K., Maest, A.S. (Eds.), Proceed. 7th Intern. Symp. on Water–Rock Interaction: Low Temperature Environments, vol. 1. Balkema, Rotterdam, pp. 793–796. Fruh-Green, G.L., Connolly, J.A.D., Plas, A., Kelley, D.S., Grobéty, B., 2004. Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. The subseafloor biosphere at mid-ocean ridges: Geophysical Monograph Series, 144. AGU, pp. 119–136. Fu, Q., Sherwood Lollar, B., Horita, J., Lacrampe-Couloume, G., Seyfried, J.W.E., 2007. Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotopic data. Geochim. Cosmochim. Acta 71, 1982–1998. Hoefen, T.M., Clark, R.N., Bandfield, J.L., Smith, M.D., Pearl, J.C., Christensen, P.R., 2003. Discovery of olivine in the Nili Fossae region of Mars. Science 302, 627–630. Homer, translated by R. Fitzgerald, 2004 The Iliad: Farrar, Straus, Giroux,NewYork, 632 pp. Horibe, Y., Craig, H., 1995. D/H fractionation in the system methane–hydrogen–water. Geochim. Cosmochim. Acta 59, 5209–5217. Hosgormez, H., 2007. Origin of the natural gas seep of Çirali (Chimera), Turkey: site of the first Olympic fire. J. Asian Earth Sci. 30, 131–141. Hosgormez, H., Etiope, G., Yalçın, M.N., 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids 8, 263–275. Jacquemin,M., Beuls, A., Ruiz, P., 2010. Catalytic production ofmethane fromCO2 andH2at low temperature: insight on the reaction mechanism. Catal. Today 157, 462–466. Jenden, P.D., Hilton, D.R., Kaplan, I.R., Craig, H., 1993. Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell, D. (Ed.), Future of Energy Gases: USGS, Professional Paper, 1570, pp. 31–35. Juteau, T., 1968. Commentaire de la carte geologique des ophiolites de la region de Kumluca (Taurus lycien, Turquie meridionale): cadre structural, modes de gisement et description des principaux fades du cortege ophiolitique. M.T.A. Bull. 70 Ankara. Lefevre, F., Forget, F., 2009. Observed variations of methane on Mars unexplained by known chemistry and physics. Nature 460, 720–723. Lyon, G., Giggenbach, W.F., Lupton, J.F., 1990. Composition and origin of the hydrogenrich gas seep, Fiordland, New Zealand. EOS Trans. V51D–10, 1717. McCollom, T.M., Bach, W., 2009. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–879. McCollom, T.M., Seewald, J.S., 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84. McCollom, T.M., Sherwood Lollar, B., Lacrampe-Couloume, G., Seewald, J.S., 2010. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim. Cosmochim. Acta 74, 2717–2740. Mischna, M.A., Allen, M., Richardson, M.I., Newman, C.E., Toigo, A.D., 2011. Atmospheric modelling of Mars methane surface releases. Planet. Space Sci. 59, 227–237. Monnin, C., Chavagnac, V., Ceuleneer, G., Boulart, C., Hoareau, G., 2011. Characterization of hyperalkaline fluids produced by serpentinization of mantle peridotites in Oman and in Liguria (Northern Italy). Mineralog. Mag. 75, 1490 (Goldschmidt Conference Abstracts). Mumma, M.J., Villanueva, G.L., Robert, E., Novak, R.E., Hewagama, T., Boncho, P., Bonev, B.P., DiSanti, M.A., Mandell, A.M., Michael, D., Smith, M.D., 2009. Strong release of methane on mars in northern summer 2003. Science 323, 1041–1045. Neal, C., Stanger, G., 1983. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 66, 315–320. Neubeck, A., Nguyen, D.T., Bastviken, D., Crill, P., Holm, N.G., 2011. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 degrees Celsius. Geochem. Transactions 12, 6. doi:10.1186/1467-4866-12-6. Ni, Y., Dai, J., Zhou, Q., Luo, X., Hu, A., Yang, C., 2009. Geochemical characteristics of abiogenic gas and its percentage in Xujiaweizi Fault Depression, Songliao Basin, NE China. Petrol. Explor. Dev. 36, 35–45. O'Neil, J., Barnes, I., 1971. Cl3 and 018 compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites: western United States. Geochim. Cosmochim. Acta 35, 687–697. Oze, C., Sharma, M., 2005. Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203. Potter, J., Rankin, A.H., Treloar, P.J., 2004. Abiogenic Fischer–Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N. W. Russia. Lithos 75, 311–330. Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J., 2006. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343. Proskurowski, G., Lilley, M.D., Seewald, J.S., Früh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P., Kelley, D.S., 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 604–607. Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. Sano, Y., Urabe, A., Wakita, H., Wushiki, H., 1993. Origin of hydrogen–nitrogen gas seeps, Oman. Appl. Geochem. 8, 1–8. Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G.F., Ward, J.A., Moser, D.P., Gihring, T.M., Lin, L.-H., Onstott, T.C., 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chem. Geol. 226, 328–339. Sherwood Lollar, B., Voglesonger, K., Lin, L.-H., Lacrampe-Couloume, G., Telling, J., Abrajano, T.A., Onstott, T.C., Pratt, L.M., 2007. Hydrogeologic controls on episodic H2 release from Precambrian fractured rocks—energy for deep subsurface life on Earth and Mars. Astrobiology 7, 971–986. Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott, T.C., Pratt, L.M., Slater, G.F., 2008. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: a model for abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 72, 4778–4795. Spulber, L., Etiope, G., Baciu, C., Malos, C., Vlad, S.N., 2010. Methane emission from natural gas seeps and mud volcanoes in Transylvania (Romania). Geofluids 10, 463–475. Szponar, N., Morrill, P.M., Brazelton, W.J., Schrenk, M.O., Bower, D.M., Steele, A., 2010. Present-day serpentinization in the Tablelands, Gros Morne National Park, Newfoundland: a Mars Analogue Site. American Geophysical Union, Fall Meeting 2010, Abstract #P13B-1393. Tang, Y., Perry, J.K., Jenden, P.D., Schoell, M., 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta 64, 2673–2687. Taran, Y.A., Kliger, G.A., Cienfuegos, E., Shuykin, A.N., 2010. Carbon and hydrogen isotopic compositions of products of open-system catalytic hydrogenation of CO2: implications for abiogenic hydrocarbons in Earth's crust. Geochim. Cosmochim. Acta 74, 6112–6125. Thampi, K.R., Kiwi, J., Grätzel, M., 1987. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327, 506–508. Thielemann, T., Lucke, A., Schleser, G.H., Littke, R., 2000. Methane exchange between coal-bearing basins and the atmosphere: the Ruhr Basin and the Lower Rhine Embayment, Germany. Org. Geochem. 31, 1387–1408. Welhan, J.A., Craig, H., 1983. Methane, hydrogen and helium in hydrothermal fluids at 21°N on the East Pacific Rise. In: Rona, P.A., Bostrom, K., Laubier, L., Smith, K.L. (Eds.), Hydrothermal Processes at Seafloor Spreading Centers. Plenum, New York, pp. 391–409. Yakushev, V.S., Chuvilin, E.M., 2000. Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg. Sci. Technol. 31, 189–197. Yuen, G., Blair, N., Des Marais, D.J., Chang, S., 1984. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307, 252–254. Zahnle,K., Freedman, R.S., Catling,D.C., 2011. Is theremethane on Mars? Icarus 212, 493–503. Zhu, Y., Shi, B., Fang, C., 2000. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chem. Geol. 164, 321–330.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorEtiope, G.en
dc.contributor.authorSchoell, M.en
dc.contributor.authorHosgörmez, H.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentGasConsult International Inc., Berkeley, USAen
dc.contributor.departmentIstanbul University, Engineering Faculty, Geology Department, Istanbul, Turkeyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptGasConsult International Inc., Berkeley, USA-
crisitem.author.deptIstanbul University, Engineering Faculty, Geology Department, Istanbul, Turkey-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Etiope-Schoell-Hosgormez-2011-EPSL-Chimaera.pdf1.54 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

106
checked on Feb 7, 2021

Page view(s) 20

305
checked on Apr 13, 2024

Download(s)

40
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric