Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7165
DC FieldValueLanguage
dc.contributor.authorallConsolini, G.; INAF-Istituto di Fisica dello Spazio Interplanetario, 00133 Roma, Italyen
dc.contributor.authorallDe Michelis, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2011-10-24T06:43:46Zen
dc.date.available2011-10-24T06:43:46Zen
dc.date.issued2011-05-06en
dc.identifier.urihttp://hdl.handle.net/2122/7165en
dc.description.abstractIn the second half of the 90s interest grew on the complex features of the magnetospheric dynamics in response to solar wind changes. An important series of papers were published on the occurrence of chaos, turbulence and complexity. Among them, particularly interesting was the study of the bursty and fractal/multifractal character of the high latitude energy release during geomagnetic storms, which was evidenced by analyzing the features of the Auroral Electrojet (AE) indices. Recently, the multifractal features of the small time-scale increments of AE-indices have been criticized in favor of a more simple fractal behavior. This is particularly true for the scaling features of the probability density functions (PDFs) of the AE index increments. Here, after a brief review of the nature of the fractal/multifractal features of the magnetospheric response to solar wind changes, we investigate the multifractal nature of the scaling features of the AE index increments PDFs using the Rank Ordering Multifractal Analysis (ROMA) technique. The ROMA results clearly demonstrate the existence of a hierarchy of scaling indices, depending on the increment amplitude, for the data collapsing of PDFs relative to increments at different time scales. Our results confirm the previous results by Consolini et al. (1996) and the more recent results by Rypdal and Rypdal (2010).en
dc.language.isoEnglishen
dc.publisher.nameCopernicus Publicationsen
dc.relation.ispartofNonlinear Processes in Geophysicsen
dc.relation.ispartofseries3/18 (2011)en
dc.subjectAE indexen
dc.subjectmultifractal analysisen
dc.titleRank ordering multifractal analysis of the auroral electrojet indexen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber277-285en
dc.subject.INGV01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physicsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.5194/npg-18-277-2011en
dc.relation.referencesAnh, V. V., Yong J. M., and Yu, Z. G.: Stochastic modeling of the auroral electrojet index, J. Geophys. Res., 113, A10215, doi:10.1029/2007JA012851, 2008. Benzi, R., Paladin, G., Vulpiani, A., and Parisi, G.: On the multifractal nature of fully developed turbulence and chaotic systems, J. Phys. A, Math. Gen., 17, 3521–3531 1984. Burlaga, M. F.: Multifractal structure of the interplanetary magnetic field – Voyager 2 observations near 25 AU, 1987–1988, Geophys. Res. Lett., 18, 69–72, 1991a. Burlaga, M. F.: Multifractal structure of speed fluctuations in recurrent streams at 1 AU and near 6 AU, Geophys. Res. Lett., 18, 1651–1654 1991b. Carbone, V.:, Cascade model for intermittency in fully developed magnetohydrodynamic turbulence, Phys. Rev. Lett., 71, 1546– 1549, 1993. Chang, T. S.: Low dimensional behaviour and symmetry breaking of stochastic systems near criticality-can these effects be observed in space and in the laboratory?, IEEE Trans. Plasma. Sci., 20, 691–694, doi:10.1109/27.199515, 1992. Chang, T. S.: Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in magnetotail, Phys. Plasmas, 6, 4137–4145, doi:10.1063/1.873678, 1999. Chang, T. S. and Wu, C. C.: Rank-ordered multifractal spectrum for intermittent fluctuations, Phys. Rev. E, 77, 045401, doi:10.1103/PhysRevE.77.045401, 2008. Chang, T. S., Hankey, A., and Stanley, H. E.: Double-power scaling functions near tricritical points, Phys. Rev. B, 7, 4263–4266, doi:10.1103/PhysRevB.7.4263, 1973. Chang, T. S., Wu, C. C., Podesta, J., Echim, M., Lamy, H., and Tam, S. W. Y.: ROMA (Rank-Ordered Multifractal Analyses) of intermittency in space plasmas – a brief tutorial review, Nonlinear Proc. Geophys., 17, 545–551, doi:10.5194/npg-17-545-2010, 2010. Chapman S. C., Watkins, N. W., Dendy, R. O., Helander, P., and Rowlands G.: A Simple Avalanche Model as an Analogue for Magnetospheric Activity, Geophys. Res. Lett., 25, 2397–2400, doi:10.1029/98GL51700, 1998. Chapman, S. C., Hnat, B., Rowlands, G., andWatkins, N.W.: Scaling collapse and structure functions: identifying self-affinity in finite length time series, Nonlin. Processes Geophys., 12, 767- 774, doi:10.5194/npg-12-767-2005, 2005. Consolini, G.: Sandpile cellular automata and magnetospheric dynamics, in: Proc. 8th GIFCO Conference: Cosmic Physics in the Year 2000: Scientific Perspectives and New Instrumentations, edited by: Aiello, S., Iucci, N., Sironi, G., Treves, A., and Villante, U., 123, SIF Bologna, 1997. Consolini, G.: Self-organized criticality: a new paradigm for the magnetotail dynamics, Fractals, 10, 275–283, 2002. Consolini, G. and De Michelis, P.: Non-Gaussian distribution function of AE-index fluctuations: evidence for time intermittency, Geophys. Res. Lett., 25, 4087–4090, doi:10.1029/1998GL900073, 1998. Consolini, G. and De Michelis, P.: A revised forest-fire cellular automaton for the nonlinear dynamics of the Earth’s magnetotail, J. Atmos. Solar-Terr. Phys., 63, 1371–1377, doi:10.1016/S1364- 6826(00)00238-8, 2001. Consolini, G. and De Michelis, P.: Local intermittency measure analysis of AE index: The directly driven and unloading component, Geophys. Res. Lett., 32, L05101, doi:10.1029/2004GL022063, 2005. Consolini, G., Marcucci, M. F., and Candidi, M.: Multifractal structure of auroral electroject index data, Phys. Rev. Lett., 76, 4082– 4085, doi:10.1103/PhysRevLett.76.4082, 1996. Davis, T. N. and Sugiura, M.: Auroral Electrojet Activity Index AE and its universal time variations, J. Geophys. Res., 71, 785–801, 1966. Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995. Frisch, U. and Parisi, G.: Fully developed turbulence and intermittency, in: Turbulence and Predictability in geophysical Fluid Dynamics and Climate Dynamics, edited by: Ghil, M., International School of Physics “Enrico Fermi” Course 88, (North-Holland, Amsterdam), p. 84, 1985. Halsey T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I.: Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A, 33, 1141–1151, doi:10.1103/PhysRevA.33.1141, 1986. Hergarten, S.: Self-Organized Criticality in Earth Systems, Springer Verlag, Berlin-Heidelberg, 2002. Hnat, B., Chapman, S. C., Rowlands, G., Watkins, N. W., and Freeman, M. P.: Scaling of solar wind and AU, AL and AE indices as seen by WIND, Geophys. Res. Lett., 29, 2078, doi:10.1029/2002GL016054, 2002. Hnat, B., Chapman, C., and Rowlands, G.: Scaling and Fokker- Planck model for fluctuations in geomagnetic indices and comparison with solar wind as seen byWind and ACE, J. Geophys. Res., 110, doi:10.1029/2004JA010824, 2005. Kaiser, A. and Schreiber, T.: Information transfer in continuous processes, Physica D, 166, 43–62, doi:10.1016/S0167- 2789(02)00432-3, 2002. Kamide, Y. and Kokubun, S.: Two-component auroral electrojet: Importance for substorm studies, J. Geophys. Res., 101, 13027– 13046, doi:10.1029/96JA00142, 1996. Macek, W. M., Bruno, R., and Consolini, G.: Generalized dimensions for fluctuations in the solar wind, Phys. Rev. E, 72, 017202, doi:10.1103/PhysRevE.72.017202, 2005. Mandelbrot, B. B.: Intermittent Turbulence in Self Similar Cascades; Divergence of High Moments and Dimensions of the Carrier, J. Fluid. Mech., 62, 331–358, doi:10.1017/S0022112074000711, 1974. Mandelbrot, B. B.: Multifractal measures, especially for geophysicist, Pure Appl. Geophys., 131, 5–42, doi:10.1007/BF00874478, 1989. Marsch, E., Tu, C.-Y., and Rosenbauer, H.: Multifractal scaling of the kinetic energy flux in solar wind turbulence, Ann. Geophys., 14, 259-269, doi:10.1007/s00585-996-0259-4, 1996. Paladin, G. and Vulpiani, A.: Anomalous scaling laws in multifractal objects, Phys. Rep., 156, 147–225, doi:10.1016/0370- 1573(87)90110-4, 1987. Pavlos, G. P., Kyriakou, G. A., Rigas, A. G., Liatsis, P. I., Trochoutsos, P. C., and Tsonis, A. A.: Evidence for strange attractor structures in space plasma, Ann. Geophys., 10, 309–322, 1992. Prichard, D., and Price, C. P.: Spurious dimension estimates from time series geomagnetic indices, Geophys. Res. Lett., 19, 1623– 1626, doi:10.1029/92GL00630, 1992. Prichard, D. and Price, C. P.: Is the AE index the result of nonlinear dynamics?, Geophys. Res. Lett., 20, 2817–2820, doi:10.1029/93GL03012, 1993. Pulkkinen, A., Klimas, A., Vassiliadis, D., and Uritsky, V.: Role of stochastic fluctuations in the magnetosphere-ionosphere system: A stocastic model for the AE index variations, J. Geophys. Res., 111, A10218, doi:10.1029/2006JA011661, 2006. Rypdal, M. and Rypdal, K.: Stochastic modelling of the AE index and its relation to fluctuations in Bz of the IMF on time scales shorter than substorm duration, J. Geophys. Res., 115, A11216, doi:10.1029/2010JA015463, 2010. Roberts, D. A.: Is there a strange attractor in the magnetosphere?, J. Geophys. Res., 96, 16031–16046, doi:10.1029/91JA01088, 1991. Shan, L. H., Goertz, C. K., and Smith, R. A.: Chaotic appearance of the AE index, Geophys. Res. Lett., 18, 147–150, doi:10.1029/90GL02477, 1991. Sharma, A. S., Vassiliadis, D. V., and Papadopoulos, K.: Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis, Geophys. Res. Lett., 20, 335–338, doi:10.1029/93GL00242, 1993. Takalo, J. and Timonen, J.: Characteristic time scale of auroral electrojet data, Geophys. Res. Lett., 21, 641–644, doi:10.1029/94GL00184, 1994. Takalo, J., Timonen, J., and Koskinen, H.: Correlation dimension and affinity of AE data and bicolored noise, Geophys. Res. Lett., 20, 1527–1530, doi:10.1029/93GL01596, 1993. Takalo, J., Timonen, J., and Koskinen, H.: Properties of AE data and bicolored noise, J. Geophys. Res., 99, 13239–13249, doi:10.1029/94JA00516, 1994. Tam, S. W. Y., Chang, T., Kintner, P. M., and Klatt, E. M.: Rank-ordered multifractal analysis for intermittent fluctuations with global crossover behavior, Phys. Rev. E, 81, 036414, doi:10.1103/PhysRevE.81.036414, 2010. Tsurutani, B. T., Goldstein, B. E., Sugiura, M., Iyemori, T., and Gonzalez, W. D.: The nonlinear response of AE to the IMF Bs driver: a spectral break at 5 hours, Geophys. Res. Lett., 17, 279– 282, doi:10.1029/GL017i003p00279, 1990. Uritsky, V. M. and Pudovkin, M. I.: Low frequency 1/f -like fluctuations of the AE-index as a possible manifestation of selforganized criticality in the magnetosphere, Ann. Geophys., 16, 1580–1588, doi:10.1007/s00585-998-1580-x, 1998. Vassiliadis, D. V., Sharma, A. S., Eastman, T. E., and Papadopoulos, K.: Low-dimensional chaos in magnetospheric activity from AE time series, Geophys. Res. Lett., 17, 1841–1844, doi:10.1029/GL017i011p01841, 1990. Watkins, N. W., Credgington, D., Hnat, B., Chapman, S. C., Freeman, M. P., and Greenhough, J.: Towards synthesis of solar wind and geomagnetic scaling exponents: a fractional L´evy motion model, Space Sci. Rev., 121, 271–284, doi:10.1007/s11214-006- 4578-2, 2005. Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., V¨or¨os, Z., Aburjania, G., Chargazia, K., and Alexandrova, O.: Magnetic turbulence in the geospace environment, Space Sci. Rev., 156, 89–134, doi:10.1007/s11214-010-9692-5, 2010. www.en
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorConsolini, G.en
dc.contributor.authorDe Michelis, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptINAF – Istituto di Astrofisica e Planetologia Spaziali, 00133 Roma, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-3403-647X-
crisitem.author.orcid0000-0002-2708-0739-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
npg2011_18.pdf574.25 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

13
checked on Feb 10, 2021

Page view(s) 1

2,650
checked on Apr 24, 2024

Download(s) 50

138
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric