Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7160
DC FieldValueLanguage
dc.contributor.authorallDoglioni, C.; Università La Sapienza Romaen
dc.contributor.authorallIsmail-Zadeh, A.; Karlsruher Institut für Technologieen
dc.contributor.authorallPanza, G.; Università di Triesteen
dc.contributor.authorallRiguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2011-10-17T10:41:38Zen
dc.date.available2011-10-17T10:41:38Zen
dc.date.issued2011-11en
dc.identifier.urihttp://hdl.handle.net/2122/7160en
dc.description.abstractThe coupling/decoupling between the lithosphere and asthenosphere has significant implications for understanding many important aspects of plate tectonics and geodynamics. To drive plate motion, mantle convection requires coupling at the lithosphere–asthenosphere (LA) interface. Meanwhile a low viscosity layer in the asthenosphere is indicative of possible LA decoupling. Here we present an analytical model of a stratified uppermost mantle structure disturbed by a long-wavelength perturbation (such as the body tide) to analyse the influence of LA viscosity contrast on the growth (or decay) rates of the perturbation. We show that the viscosity contrast of 8–10 orders of magnitude would allow a relative motion of the lithosphere over the asthenosphere due to the long-wavelength perturbations at the rate of about 10 cm yr 1. These constrains on the viscosity contrast can allow to discriminate between the LA coupling and decoupling. The growing seismic and mineralogical evidences of a possible ultra low viscosity asthenospheric layer may be indicative of the LA decoupling and their relative motions due to longwavelength perturbations, and a contribution of the tidal drag on the plate motion should not be neglected in the regions of high viscosity contrasts.en
dc.description.sponsorshipResearch supported by DFG IS203/1-1, Miur-Prin 2008, CNR Eurocores, TopoEurope, and RASP Program No. 23.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries/189 (2011)en
dc.subjectLithosphere dynamicsen
dc.subjectAsthenosphereen
dc.subjectViscosity contrasten
dc.subjectDecouplingen
dc.subjectAnalytical modellingen
dc.subjectRayleigh–Taylor instabilityen
dc.titleLithosphere–asthenosphere viscosity contrast and decouplingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-8en
dc.identifier.URLhttp://www.sciencedirect.com/science/article/pii/S0031920111001889en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.identifier.doi10.1016/j.pepi.2011.09.006en
dc.relation.referencesAdám, A., Panza, G.F., 1989. A critical review of the magnetotelluric information on the upper mantle. Acta Geod. Geoph. Mont. Hung. 24, 395–415. Anderson, D.L., 2006. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416, 7–22. Anderson, D.L., 2007. New Theory of the Earth, Cambridge University Press. Anderson, D.L., 2010. Hawaii, boundary layers and ambient mantle-geophysical constraints. J. Petrology, doi: 10.1093/petrology/egq068. Becker, T.W., 2008. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys. Res. Lett. 35, L05303. Bokelmann, G.H., 2002. Which forces drive North America? Geology 30, 1027–1030. Boschi, L., Ampueroa, J.-P., Peter, D., Maia, P.M., Soldati, G., Giardini, D., 2007. Petascale computing and resolution in global seismic tomography. Phys. Earth Planet. Int. 163, 245–250. Bostrom, R.C., 1971. Westward displacement of the lithosphere. Nature 234, 356– 538. Calcagnile, G., Panza, G.F., 1987. Properties of the lithosphere–asthenosphere system in Europe with a view toward Earth conductivity. Pure Appl. Geophys. 125, 241–254. Cathles, L.M., 1975. The Viscosity of the Earth’s Mantle. Princeton University Press. Craig, C.H., McKenzie, D., 1986. The existence of a thin low-viscosity layer beneath the lithosphere. Earth Planet. Sci. Lett. 78 (4), 420–426. Crespi, M., Cuffaro, M., Doglioni, C., Giannone, F., Riguzzi, F., 2007. Space geodesy validation of the global lithospheric flow. Geophys. J. Int. 168, 491–506. Cuffaro, M., Doglioni, C., 2007. Global Kinematics in the deep versus shallow hotspot reference frames. In: Foulger, G.R., Jurdy, D.M. (Eds.), Plates, Plumes, and Planetary Processes, Geol. Soc. Am. Spec. Pap., 430, pp. 359–374. Dingwell, D.B., Courtial, P., Giordano, D., Nichols, A.R.L., 2004. Viscosity of peridotite liquid. Earth Planet. Sci. Lett. 226, 127–138. Doglioni, C., 1993. Geological evidence for a global tectonic polarity. J. Geol. Soc. 150, 991–1002. Doglioni, C., Green, D., Mongelli, F., 2005. On the shallow origin of hotspots and the westward drift of the lithosphere. In: Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, Plumes and Paradigms, GSA Sp. Paper, 388, pp. 735– 749. Doglioni, C., Carminati, E., Cuffaro, M., Scrocca, D., 2007. Subduction kinematics and dynamic constraints. Earth Sci. Rev. 83, 125–175. Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356. Fletcher, R.C., 1974. Wavelength selection in the folding of a single layer with power law rheology. Am. J. Sci. 274, 1029–1043. Green, D.H., Hibberson, W.O., Kovacs, I., Rosenthal, A., 2010. Water and its influence on the lithosphere–asthenosphere boundary. Nature 467, 448–451. Gripp, A.E., Gordon, R.G., 2002. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361. Gung, Y., Panning, M., Romanowicz, B., 2003. Global anisotropy and the thickness of continents. Nature 422, 707–710. Harris, J.W., Stocker, H., 1998. Handbook of Mathematics and Computational Science. Springer, New York. Heinson, G., 1999. Electromagnetic studies of the lithosphere and asthenosphere. Surveys Geophys. 20 (4), 229–255. Hirth, G., Kohlstedt, D.L., 1995. Experimental constraints on the dynamics of the partially molten upper mantle, 2, deformation in the dislocation creep regime. J. Geophys. Res. 100, 15441–15449. Hirth, G., Kohlstedt, D.L., 1996. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108. Hirth, G., Kohlstedt, D.L., 2003. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: John Eiler (Ed.), Inside the Subduction Factory, Geophysical Monograph 138, American Geophysical Union, Washington, DC, pp. 83–105. Holtzman, B.K., Groebner, N.J., Zimmerman, M.E., Ginsberg, S.B., Kohlstedt, D.L., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, 8607. Ismail-Zadeh, A.T., 1994. Gravitational instability and propagation of tectonic waves in a two-layer model of the upper mantle. In: Chowdhury, D.K. (Ed.), Computational Seismology and Geodynamics, vol. 2. American Geophysical Union, Washington, DC, pp. 76–80. Ismail-Zadeh, A.T., Tackley, P., 2010. Computational Methods for Geodynamics. Cambridge University Press, Cambridge. Ismail-Zadeh, A.T., Huppert, H.E., Lister, J.R., 2002. Gravitational and buckling instabilities of a rheologically layered structure: implications for salt diapirism. Geophys. J. Int. 148, 288–302. Ismail-Zadeh, A., Aoudia, A., Panza, G., 2010. Three-dimensional numerical modeling of contemporary mantle flow and tectonic stress beneath the Central Mediterranean. Tectonophysics 482, 226–236. Ito, T., Simons, M., 2011. Probing asthenospheric density, temperature, and elastic moduli below the western United States. Science 332, 947–951. Jin, Z.-M., Green, H.G., Zhou, Y., 1994. Melt topology in partially molten mantle peridotite during ductile deformation. Nature 372, 164–167. Jordan, T.H., 1974. Some comments on tidal drag as a mechanism for driving plate motions. J. Geophys. Res. 79 (14), 2141–2142. Kelly, R.K., Kelemen, P.B., Jull, M., 2003. Buoyancy of the continental upper mantle. Geochem. Geophys. Geosyst. 4(2), 1017, doi:10.1029/2002GC000399. Knopoff, L., Leeds, A., 1972. Lithospheric Momenta and the deceleration of the Earth. Nature 237 (12), 93–95. Kohlstedt, D.L., Holtzman, B.K., 2009. Shearing melt out of the Earth: an experimentalist’s perspective on the influence of deformation on melt extraction. Ann. Rev. Earth Planet. Sci. 37, 561–593. C. Doglioni et al. / Physics of the Earth and Planetary Interiors 189 (2011) 1–8 7Kohlstedt, D.L., Zimmerman, M.E., Mackwell, S.J., 2010. Stress-driven melt segregation in partially molten feldspathic rocks. J. Petrol. 51, 9–19. Korenaga, J., Karato, S.-I., 2008. A new analysis of experimental data on olivine rheology. J. Geophys. Res. 113, B02403. Kreemer, C., 2009. Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. J. Geophys. Res. 114, B10405. Le Pichon, X., 1968. Sea-floor spreading and continental drift. J. Geophys. Res. 73 (12), 3661–3697. Liebske, C., Schmickler, B., Terasaki, H., Poe, B.T., Suzuki, A., Funakoshi, K., Ando, R., Rubie, D.C., 2005. Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities. Earth Planet. Sci. Lett. 240, 589–604. Marone, F., Romanowicz, B., 2007. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature 447, 198–202. Mei, S., Bai, W., Hiraga, T., Kohlstedt, D.L., 2002. Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth Planet. Sci. Lett. 201, 491–507. Moore, G.W., 1973. Westward tidal lag as the driving force of plate tectonics. Geology 1, 99–100. Nelson, T.H., Temple, P.G., 1972. Mainstream mantle convection; a geologic analysis of plate motion. AAPG Bulletin 56, 226–246. O’Connell, R., Gable, C.G., Hager, B., 1991. Toroidal-poloidal partitioning of lithospheric plate motions. In: Sabadini R. et al. (Eds.), Glacial Isostasy, Sea- Level and Mantle Rheology, vol. 334, Kluwer Academic Publisher, pp. 535–551. Panza, G., Raykova, R.B., Carminati, E., Doglioni, C., 2007a. Upper mantle flow in the western Mediterranean. Earth Planet. Sci. Lett. 257, 200–214. Panza, G.F., Peccerillo, A., Aoudia, A., Farina, B., 2007b. Geophysical and petrological modeling of the structure and composition of the crust and upper mantle in complex geodynamic settings: the Tyrrhenian Sea and surroundings. Earth Sci. Rev. 80, 1–46. Panza, G., Doglioni, C., Levshin, A., 2010. Asymmetric ocean basins. Geology 38, 59– 62. Paulson, A., Zhong, S., Wahr, J., 2007. Limitations on the inversion for mantle viscosity from postglacial rebound. Geophys. J. Int. 168, 1195–1209. Pollitz, F.F., Burgmann, R., Romanowicz, B., 1998. Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science 280, 1245–1249. Ranalli, G., 2000. Westward drift of the lithosphere: not a result of rotational drag. Geophys. J. Int. 141, 535–537. Ricard, Y., Doglioni, C., Sabadini, R., 1991. Differential rotation between lithosphere and mantle: a consequence of lateral viscosity variations. J. Geophys. Res. 96, 8407–8415. Riguzzi, F., Panza, G., Varga, P., Doglioni, C., 2010. Can Earth’s rotation and tidal despinning drive plate tectonics? Tectonophysics 484, 60–73. Romanowicz, B., 2003. Global mantle tomography: progress status in the last 10 years. Annu. Rev. Geoph. Space Phys., 31(1), 303. Rychert, C.A., Fischer, C.M., Rondenay, S., 2005. A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 436, 542–545. Scoppola, B., Boccaletti, D., Bevis, M., Carminati, E., Doglioni, C., 2006. The westward drift of the lithosphere: a rotational drag? Bull. Geol. Soc. Am. 118, 199–209. Smith, R.B., 1979. The folding of a strongly non-Newtonian layer. Am. J. Sci. 279, 272–287. Stevenson, D.J., 1994. Weakening under stress. Nature 372, 129–130. Thybo, H., 2006. The heterogeneous upper mantle low velocity zone. Tectonophysics 416, 53–79. Waldhauser, F., Lippitsch, R., Kissling, E., Ansorge, J., 2002. High-resolution teleseismic tomography of upper-mantle structure using an a priori threedimensional crustal model. Geophys. J. Int. 150, 403–414. Zandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J., Jones, C.H., 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDoglioni, C.en
dc.contributor.authorIsmail-Zadeh, A.en
dc.contributor.authorPanza, G.en
dc.contributor.authorRiguzzi, F.en
dc.contributor.departmentUniversità La Sapienza Romaen
dc.contributor.departmentKarlsruher Institut für Technologieen
dc.contributor.departmentUniversità di Triesteen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptKarlsruher Institut für Technologie-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-8651-6387-
crisitem.author.orcid0000-0003-3453-5110-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Doglioni_etal_revision_included.docmain article514 kBMicrosoft Word
figure.zipFigure compressed format766.87 kBwinzip
Show simple item record

WEB OF SCIENCETM
Citations 20

37
checked on Feb 10, 2021

Page view(s) 50

395
checked on Mar 27, 2024

Download(s)

30
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric