Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Helffrich, George*
Pesaresi, Damiano*
Tonegawa, Takashi*
Title: The OGS local virtual seismic network in South-Central Europe as an array: exploiting depth phases to locate upper mantle discontinuities
Issue Date: 10-Jul-2011
Keywords: upper mantle
virtual seismic network
South-Central Europe
Abstract: The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude Mw=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy (NI) Seismic Network: it currently consists of 13 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with neighbouring Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of 94 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. In this study we use P, pP, S and sS phases from global events recorded by the OGS local virtual seismic network in South-Central Europe to study upper mantle discontinuities above earthquakes in the subducted Pacific Plate. We use the time lag between the surface-reflected depth phase and a precursor to determine the discontinuity depth. Accurate estimation of reflector depth depends on a velocity model of the source-side mantle structure. In contrast to typical one-dimensional velocity models, our source-side structure is oceanic, with a shallow Moho and thin crust overlain with water. The time lag between the direct P and pP or S and sS arrivals without accounting for source structure can be as large as 5 s when compared to a purely continental model like iasp91 or ak135. We identify upper mantle discontinuities using slant stacking and depth-migrated standardized waveforms. The processing shows S-to-P arrivals from the 660 km discontinuity, the 410 km discontinuity, and shallower upper mantle ones of uncertain origin.
Appears in Collections:04.07.04. Plate boundaries, motion, and tectonics
Conference materials

Files in This Item:

File SizeFormatVisibility
T1-P27_Helffrich.pdf3.33 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA