Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7078
DC FieldValueLanguage
dc.contributor.authorallPeiffer, L.; Instituto de Geofisica, Universidad Nacional Autonoma de Mexicoen
dc.contributor.authorallTaran, Y.; Instituto de Geofisica, Universidad Nacional Autonoma de Mexicoen
dc.contributor.authorallLounejeva, E.; Instituto de Geologia, Universidad Nacional Autonoma de Mexicoen
dc.contributor.authorallSolis-Pichardo, G.; Instituto de Geologia, Universidad Nacional Autonoma de Mexicoen
dc.contributor.authorallRouwet, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallBernard-Romero, R.; Instituto de Geofisica, Universidad Nacional Autonoma de Mexicoen
dc.date.accessioned2011-08-03T13:01:28Zen
dc.date.available2011-08-03T13:01:28Zen
dc.date.issued2011-08-15en
dc.identifier.urihttp://hdl.handle.net/2122/7078en
dc.description.abstractThe volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.en
dc.description.sponsorship-en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries3-4/205(2011)en
dc.subjecthydrogeochemistryen
dc.subjectgeothermal systemsen
dc.subjectSr isotopesen
dc.subjectREEen
dc.subjectEl Chichón Volcanoen
dc.titleTracing thermal aquifers of El Chichón volcano-hydrothermal system (México) with 87Sr/86Sr, Ca/Sr and REEen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber55-66en
dc.identifier.URLhttp://www.sciencedirect.com/science/journal/03770273en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of watersen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1016/j.volgeores.2011.06.004en
dc.relation.referencesAdams, M.C., 1996. Chemistry of fluids from Ascension #1, a deep geothermal well on Ascension Island, South Atlantic Ocean. Geothermics 25, 561–579. Andrews, B.J., Gardner, J.E., Housh, T.B., 2008. Repeated recharge, assimilation and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. J. Volcanol. Geotherm. Res. 175, 415–426. Banner, J.L., Wasserburg, G.J., Dobson, P.F., Carpenter, A.B., Moore, C.H., 1989. Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochim. Cosmochim. Acta 53, 383–398. Birkle, P., Martínez, B.G., Milland, C.P., Eglington, B., 2009. Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir, Gulf of Mexico. Part 1: chemical evolution and water–rock interaction. Appl. Geochem. 24, 543–554 2009. Cañul, R.F., Rocha, V.L., 1981. Informe geológico de la zona geotérmica de “El Chichónal”. Chiapas. Com. Fed. de Electr., Morelia, México. Informe 32–81 38 pp. Chaudhuri, S., Broedel, V., Clauer, N., 1987. Strontium isotopic evolution of oil-field waters from carbonate reservoir rocks in Bindley field, central Kansas, USA. Geochim. Cosmochim. Acta 51, 45–53. Connolly, C.A., Walter, L.M., Baadsgaard, H., Longstaffe, F.J., 1990a. Origin and evolution of formation waters, Alberta Bain, western Canada, sedimentary basin. I. Chemistry. Appl. Geochem. 5, 375–395. Connolly, C.A., Walter, L.M., Baadsgaard, H., Longstaffe, F.J., 1990b. Origin and evolution of formation waters, Alberta Bain, western Canada, sedimentary basin. II. Isotope systematics and water mixing. Appl. Geochem. 5, 397–413. Duffield, W.A., Tilling, R.I., Cañul, R., 1984. Geology of El Chichón Volcano, Chiapas, Mexico. J. Volcanol. Geotherm. Res. 20, 117–132. Elderfield, H., Greaves, M.J., 1981. Strontium isotope geochemistry of Icelandic geothermal systems and implications for sea water chemistry. Geochim. Cosmochim. Acta 45, 2201–2212. Faure, G., 1977. Principles of Isotope Geology. John Wiley & Sons. Fernandez-Turiel, J.L., Gimeno-Torrente, D., Saavedra-Alonso, J., Martinez-Manent, S., 2005. The hot spring and geyser sinters of El Tatio, Northern Chile. Sed. Geol. 180, 125–147. García-Palomo, A., Macias, J.L., Espindola, J.M., 2004. Strike-slip faults and K-alkaline volcanism at El Chichón volcano, southeastern Mexico. J. Volcanol. Geotherm. Res. 136, 247–268. Giammanco, S., Ottaviani, M., Valenza, M., Veschetti, E., Principio, E., Giammanco, G., et al., 1998. Major and trace elements geochemistry in the ground waters of a volcanic area: Mount Etna (Sicily, Italy). Water Res. 32, 19–30. Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca 568 geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765. Goff, F., Wollenberg, H., Brookins, D.C., Kistler, R., 1991. A Sr isotopic comparison between thermal waters, rocks, and hydrothermal calcits, Long Valley Caldera, California. J. Volcanol. Geotherm. Res. 48, 265–281. Graham, I., 1992. Strontiumisotope composition of Rotorua geothermalwaters. Geothermics 21, 165–180. Grimes, S., Rickard, D., Hawkesworth, C., Van Calsteren, P., Browne, P., 2000. The Broadlands-Ohaaki geothermal system, New Zealand: Part 1. Strontium isotope distribution in well BrO-29. Chem. Geol. 163, 247–265. Gudmundsson, B.T., Arnórsson, S., 2005. Secondary mineral–fluid equilibria in the Krafla and Námafjall geothermal systems, Iceland. Appl. Geochem. 20, 1607–1625. Ishikawa, H., Ohba, T., Fujimaki, H., 2007. Sr isotope diversity of hot spring and volcanic lake waters from Zao volcano, Japan. J. Volcanol. Geotherm. Res. 166, 7–16. Jones, D.A., Layer, P.W., Newberry, R.J., 2008. A 3100-year history of argon isotopic and compositional variation at El Chichón volcano. J. Volcanol. Geotherm. Res. 175, 427–443. Keith, T.E.C., Thompson, J.M., Hutchinson, R.A., White, L.D., 1992. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska. J. Volcanol. Geotherm. Res. 49, 209–231. Layer, P.W., García-Palomo, A., Jones, D., Macías, J.L., Arce, J.L., Mora, J.C., 2009. El Chichón volcanic complex, Chiapas, México: stages of evolution based on field mapping and 40Ar/39Ar geochronology. Geofís. Int. 48, 33–54. Lewis, A.J., Palmer, M.A., Sturchio, N.C., Kemp, A.J., 1997. The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta 61, 695–706. Luhr, J.F., Carmichael, I.S.E., Varekamp, J.C., 1984. The 1982 eruptions of El Chichón volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J. Volcanol. Geotherm. Res. 23, 69–108. Macias, J.L., Arce, J.L., Garduño-Monroy, V.H., Rouwet, D., Taran, Y., 2010. Estudio de prospeccion geotermica para evaluar el potencial del volcán Chichónal, Chiapas. Contrato n° 9400047770 IGF-UNAM-CFE (In Spanish). Manea, M., Manea, V.C., 2008. On the origin of El Chichón volcano and subduction of the Tehuantepec Ridge: a geodynamical perspective. J. Volcanol. Geotherm. Res. 175, 459–471. Mazot, A., Taran, Y.A., 2009. CO2 flux from the crater lake of El Chichón volcano (México). Geofís. Int. 48, 73–83. Mazot, A., Rouwet, D., Taran, Y., Inguaggiato, S., Varley, N., 2011. CO2 and He degassing at El Chichón volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics. In: Inguaggiato, S., Shinohara, H., Fischer, T. (Eds.), Geochemistry of volcanic fluids: a special issue in honor of Yuri A: Taran. Bull. Volcanol., 73, pp. 423–442. Michard, A., 1989. Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 53, 745–750. Morton-Bermea, O., Armienta, M.A., Ramos, S., 2010. Rare-earth element distribution in water from El Chichón Volcano Crater Lake, Chiapas Mexico. Geofís. Int. 49, 43–54. Nixon, G.T., 1982. The relationship between Quaternary volcanism in central Mexico and the seismicity and structure of the subducted ocean lithosphere. Geol. Soc. Am. Bull. 93, 514–523. Pasternack, G.B., Varekamp, J.C., 1994. The geochemistry of the Keli Mutu crater lakes, Flores, Indonesia. Geochem. J. 28, 243–262. Pauwels, H., Fouillac, C., Goff, F., Vuataz, F., 1997. The isotopic and chemical composition of CO2-rich thermal waters in the Mont-Dore region (Massif-Central, France). Appl. Geochem. 12, 411–427. Pennisi, M., Leeman, W.P., Tonarini, S., Pennisi, A., Nabelek, P., 2000. Boron, Sr, O, and H isotope geochemistry of groundwaters fromMt. Etna (Sicily)—hydrologic implications. Geochim. Cosmochim. Acta 64, 961–974. Peterman, Z.E., Hedge, C.E., Tourtelot, H.A., 1970. Isotopic composition of Sr in seawater throughout Phanerozoic time. Geochim. Cosmochim. Acta 34, 105–120. Reed, M.H., 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528. Roine, A., 2006. What's new in HSC Chemistry 6.0. Outokumpu research of Finland, Finland.Rouwet, D., Taran, Y., Varley, N.R., 2004. Dynamics and mass balance of El Chichón crater lake, Mexico. Geofís. Int. 43 (3), 427–434. Rouwet, D., Taran, Y., Inguaggiato, S., Varley, N., Santiago, S.J.A., 2008. Hydrochemical dynamics of the “lake–spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J. Volcanol. Geotherm. Res. 178, 237–248. Rouwet, D., Bellomo, S., Brusca, L., Inguaggiato, S., Jutzeler, M., Mora, R., et al., 2009. Major and trace element geochemistry of El Chichón volcano hydrothermal system (Chiapas, Mexico) in 2006–2007: implications for future geochemical monitoring. Geofís. Int. 48 (1), 55–72. Shand, P., Darbyshire, D.P.F., Love, A.J., Edmunds, W.M., 2009. Sr isotopes in natural waters: applications to source characterization and water–rock interaction in contrasting landscapes. Appl. Geochem. 24, 574–586. Sorey, M.L., Colvard, E.M., 1997. Hydrologic investigations in the Mammoth Corridor, Yellowstone National Park and vicinity, U.S.A. Geothermics 26, 221–249. Sriwana, T., van Bergen, M.J., Varekamp, J.C., Sumarti, S., Takano, B., Van Os, B.J.H., et al., 2000. Geochemistry of the acid Kawah Putih Lake, Patuha volcano, West Java, Indonesia. J. Volcanol. Geotherm. Res. 97, 77–104. Stimac, J.A., Goff, F., Counce, D., Larocque, A.C.L., Hilton, D.R., Morgenstern, U., 2004. The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after the eruption. Bull. Volcanol. 66, 149–167. Stollenwerk, K.G., 2003. Geochemical processes controlling transport of arsenic in groundwater: a reviewof adsorption. In:Welch, A.H., Stollenwerk, K.G. (Eds.), Arsenic in ground water: geochemistry and occurence. Kluwer Academic Publishers, Boston, pp. 67–100. Takano, B., Fazlullin, S.M., Delmelle, P., 2000. Analytical laboratory comparison of major and minor constituents in an active crater lake. J. Volcanol. Geotherm. Res. 97, 497–508. Takano, B., Suzuki, K., Sugimori, K., Ohba, T., Fazlullin, S.M., Bernard, A., et al., 2004. Bathymetric and geochemical investigation of Kawah Ijen Crater Lake, East Java, Indonesia. J. Volcanol. Geotherm. Res. 135, 299–329. Taran, Y.A., Peiffer, L., 2009. Hydrology, hydrochemistry and geothermal potential of El Chichón volcano–hydrothermal system, Mexico. Geothermics 38, 370–378. Taran, Y., Rouwet, D., 2008. Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J. Volcanol. Geotherm. Res. 175, 472–481. Taran, Y., Fischer, T.P., Pokrovsky, B., Sano, Y., Armienta, M.A., Macías, J.L., 1998. Geochemistry of the volcano–hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull. Volcanol. 59, 436–449. Taran,Y., Rouwet,D., Inguaggiato, S.,Aiuppa,A., 2008.Majorandtraceelementgeochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. Implications for monitoring of the volcanic activity. J. Volcanol. Geotherm. Res. 178, 224–236. Tassi, F., Vaselli, O., Capaccioni, B., Macías, J.L., Nencetti, A., Montegrossi, G., et al., 2003. Chemical composition of fumarolic gases and spring discharges from El Chichón volcano, Mexico: causes and implications of the changes detected over the period 1998–2000. J. Volcanol. Geotherm. Res. 123, 105–121. Tepley, F.J., Davidson, J.P., Tilling, R.I., Arth, J.G., 2000. Magma mixing, recharge and eruption histories recorded in Plagioclase Phenocrysts from El Chichón Volcano, Mexico. J. Petrol. 41, 1397–1411. Thompson, J.M., 1985. Chemistry of thermal and nonthermal springs in the vicinity of Lassen Volcanic National Park. J. Volcanol. Geotherm. Res. 25, 81–104. van Hinsberg, V., Berlo, K., Sumarte, S., van Bergen, M., Williams-Jones, A., 2010. Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: II Metasomatic imprint and element fluxes. J. Volcanol. Geotherm. Res. 196, 169–184. Varekamp, J.C., 2008. The acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. J. Volcanol. Geotherm. Res. 178, 184–196 (spec. iss., Volcanic Lakes). Varekamp, J.C., Ouimette, A.P., Herman, S.W., Flynn, K.S., Bermudez, A., Delpino, D., 2009. Naturally acidwaters fromCopahue volcano, Argentina. Appl. Geochem. 24, 208–220. Vuataz, F., Goff, F., Fouillac, C., Calvez, J., 1988. A strontium isotope study of the VC-1 core hole and associated hydrothermal fluids and rocks from Valles caldera, Jamez Mountains, New Mexico. J. Geophys. Res. 93, 6059–6067. Williams, A.E., McKibben, M.A., 1989. A brine interface in the Salton Sea Geothermal System, California: fluid geochemical and isotopic characteristics. Geochim. Cosmochim. Acta 53, 1905–1920. Wood, S.A., 2003. The geochemistry of rare earth elements and yttrium in geothermal waters. In: Simmons, S.F., Graham, I. (Eds.), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth society of economic geology special publication, vol. 10, pp. 133–158. Wood, S.A., 2006. Rare earth element systematics of acidic geothermal waters from the Taupo Volcanic Zone, New Zealand. J. Geochem. Explor. 89, 424–427.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPeiffer, L.en
dc.contributor.authorTaran, Y.en
dc.contributor.authorLounejeva, E.en
dc.contributor.authorSolis-Pichardo, G.en
dc.contributor.authorRouwet, D.en
dc.contributor.authorBernard-Romero, R.en
dc.contributor.departmentInstituto de Geofisica, Universidad Nacional Autonoma de Mexicoen
dc.contributor.departmentInstituto de Geofisica, Universidad Nacional Autonoma de Mexicoen
dc.contributor.departmentInstituto de Geologia, Universidad Nacional Autonoma de Mexicoen
dc.contributor.departmentInstituto de Geologia, Universidad Nacional Autonoma de Mexicoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentInstituto de Geofisica, Universidad Nacional Autonoma de Mexicoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F, 04510, Mexico-
crisitem.author.deptInstitute of Geophysics, Universidad Nacional Autonoma de Mexico, Ciudad Universitario, Del. Coyocan, 04510 Mexico, DF, Mexico-
crisitem.author.deptInstituto de Geologia, Universidad Nacional Autonoma de Mexico-
crisitem.author.deptInstituto de Geologia, Universidad Nacional Autonoma de Mexico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-2036-8449-
crisitem.author.orcid0000-0003-3390-4316-
crisitem.author.orcid0000-0003-3366-3882-
crisitem.author.orcid0000-0001-5387-2214-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Peiffer Ca Sr El Chichon JVGR 2011.pdfMain article1.28 MBAdobe PDF
Show simple item record

Page view(s) 50

234
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric