Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7047
DC FieldValueLanguage
dc.contributor.authorallVenuti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.authorallCaburlotto, A.; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Sgonico, Italy-
dc.contributor.authorallHounslow, M. W.; Lancaster Environment Centre, Lancaster University, Lancaster, UK-
dc.contributor.authorallHillenbrand, C.-D.; British Antarctic Survey, Cambridge, UK-
dc.contributor.authorallStrada, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.authorallTalarico, F. M.; Dipartimento di Scienze della Terra, Università di Siena, Siena, Italy-
dc.contributor.authorallCavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia-
dc.date.accessioned2011-06-30T07:19:21Z-
dc.date.available2011-06-30T07:19:21Z-
dc.date.issued2011-06-21-
dc.identifier.urihttp://hdl.handle.net/2122/7047-
dc.description.abstractWe present results of detailed paleomagnetic investigations on deep!sea cores from sediment drifts located along the Pacific continental margin of the Antarctic Peninsula. High!resolution magnetic measurements on u channel samples provide detailed age models for three cores collected from drift 7, which document an age of 122 ka for the oldest sediments recovered near the drift crest at site SED!07 and a high sedimentation rate (11 cm/kyr) at site SED!12 located close to the Alexander Channel system. Low! and high!temperature magnetic measurements in conjunction with microscopic and mineralogic observations from drifts 4, 5 and 7 indicate that pseudosingle!domain detrital titanomagnetite (partially oxidized and with limited Ti substitution) is the dominant magnetic mineral in the drift sediments. The titanomagnetite occurs in two magnetic forms: (1) a low!coercivity form similar to laboratory!synthesized titanomagnetite and (2) a high!coercivity form (Bcr > 60 mT). These two forms vary in amount and stratigraphic distribution across the drifts. We did not find evidence for diagenetic magnetic iron sulfides as has been previously suggested for these drift deposits. The observed change of magnetic mineralogy in sediments deposited during Heinrich events on drift 7 appears to be related to warming periods, which temporarily modified the normal glacial transport pathways of glaciogenic detritus to and along the continental rise and thus resulted in deposition of sediments with a different provenance. Understanding this sediment provenance delivery signature at a wider spatial scale should provide information about ice sheet dynamics in West Antarctica over the last !100 kyr.en_US
dc.language.isoengen_US
dc.publisher.nameAmerican Geophysical Unionen_US
dc.relation.ispartofJournal of Geophysical Researchen_US
dc.relation.ispartofseries/116 (2011)en_US
dc.subjectAntarctic Peninsulaen_US
dc.subjectPacific marginen_US
dc.subjectsediment driften_US
dc.subjectlate Pleistoceneen_US
dc.subjectMineral magnetismen_US
dc.subjectrelative palaeointensityen_US
dc.titleLate Quaternary sediments from deep!sea sediment drifts on the Antarctic Peninsula Pacific margin: Climatic control on provenance of mineralsen_US
dc.typearticle-
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.description.pagenumberB06104en_US
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen_US
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen_US
dc.identifier.doi10.1029/2010JB007952en_US
dc.relation.referencesActon, G. D., M. Okada, B. M. Clement, S. P. Lund, and T. Williams (2002), Paleomagnetic overprints in ocean sediment cores and their relationship to shear deformation caused by piston coring, J. Geophys. Res., 107(B4), 2067, doi:10.1029/2001JB000518. Amblas,D., R. Urgeles, M. Canals,A.M.Calafat,M.Rebesco,A.Camerlenghi, F. Estrada, M. De Batist, and J. E. Hughes!Clarke (2006), Relationship between continental rise development and palaeo!ice sheet dynamics, Northern Antarctic Peninsula Pacific margin, Quat. Sci. Rev., 25, 933–944, doi:10.1016/j.quascirev.2005.07.012. Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle (2009), Wind!driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443–1448, doi:10.1126/science.1167441. Barker, P. F., et al. (1999a), Proceedings of the Ocean Drilling Program Initial Reports, vol. 178, Ocean Drill. Program, College Station, Tex., doi:10.2973/odp.proc.ir.178.1999. Barker, P. F., P. J. Barrett, A. K. Cooper, and P. Huybrechts (1999b), Antarctic glacial history from numerical models and continental margin sediments, Palaeogeogr. Palaeoclimatol. Palaeoecol., 150, 247–267, doi:10.1016/S0031-0182(98)00224-7. Barker, P. F., A. Camerlenghi, G. D. Acton, and A. T. S. Ramsay (Eds.) (2002), Proceedings of the Ocean Drilling Program Scientific Results, vol. 178, Ocean Drill. Program, College Station, Tex., doi:10.2973/ odp.proc.sr.178.2002. Barker, P. F., G. M. Filippelli, F. Florindo, E. E. Martin, and H. D. Scher (2007), Onset and role of the Antarctic Circumpolar Current, Deep Sea Res., Part II, 54, 2388–2398, doi:10.1016/j.dsr2.2007.07.028. Brachfeld, S. A., Y. Guyodo, and G. D. Acton (2001), Data report: The magnetic mineral assemblage of hemipelagic drifts, ODP Site 1096, Proc. Ocean Drill. Program Sci. Results, 178, 1–10, doi:10.2973/odp. proc.sr.178.233.2001. Camerlenghi, A., A. Crise, C. J. Pudsey, E. Accerboni, R. Laterza, and M. Rebesco (1997a), Ten!month observation of the bottom current regime across a sediment drift of the Pacific margin of the Antarctic Peninsula, Antarct. Sci., 9, 426–433, doi:10.1017/S0954102097000552. Camerlenghi, A., M. Rebesco, and C. J. Pudsey (1997b), High resolution terrigenous sedimentary record of a sediment drift on the Antarctic Peninsula Pacific margin (Initial Results of the ‘SEDANO’ Program), in The Antarctic Region: Geological Evolution and Processes, edited by C. A. Ricci, pp. 705–710, Terra Antartica, Siena, Italy. Carter, L., I. N. McCave, and M. J. M. Williams (2008), Circulation and water masses of the Southern Ocean: A review, in Antarctic Climate Evolution, Dev. Earth Environ. Sci., vol. 8, pp. 85–114, edited by F. Florindo and M. Siegert, Elsevier, New York. Chapman, M. R., N. J. Shackleton, and J.!C. Duplessy (2000), Sea surface temperature variability during the last glacial!interglacial cycle: Assessing the magnitude and pattern of climate change in the North Atlantic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 157, 1–25, doi:10.1016/ S0031-0182(99)00168-6. Cowan, E. A., C.!D. Hillenbrand, L. E. Hassler, and M. T. Ake (2008), Coarse!grained terrigenous sediment deposition on continental rise drifts: A record of Plio!Pleistocene glaciation on the Antarctic Peninsula, Palaeogeogr. Palaeoclimatol. Palaeoecol., 265, 275–291, doi:10.1016/ j.palaeo.2008.03.010. Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain!size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, doi:10.1016/0031-9201(77)90108-X. Dekkers, M. J. (1989), Magnetic properties of natural pyrrhotite. II. High! and low!temperature behaviour of Jrs and TRM as function of grain size, Phys. Earth Planet. Inter., 57, 266–283, doi:10.1016/0031-9201(89)90116-7. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. EPICA Community Members (2006), One!to!one hemispheric coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, doi:10.1038/nature05301. Feinberg, J. M., G. R. Scott, P. R. Renne, and H.!R. Wenk (2005), Exsolved magnetite inclusions in silicates: Features determining their remanence behavior, Geology, 33, 513–516, doi:10.1130/G21290.1. Florindo, F., and L. Sagnotti (1995), Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section, Geophys. J. Int., 123, 340–354, doi:10.1111/j.1365-246X.1995.tb06858.x. Florindo, F., and M. Siegert (Eds.) (2008), Antarctic Climate Evolution, Dev. Earth Environ. Sci., vol. 8, pp. 1–593, Elsevier, New York. Florindo, F., G. S. Wilson, A. P. Roberts, L. Sagnotti, and K. L. Verosub (2005), Magnetostratigraphic chronology of a Late Eocene to early Miocene glacimarine succession from the Victoria Land Basin, Ross Sea, Antarctica, Global Planet. Change, 45, 207–236, doi:10.1016/j.gloplacha. 2004.09.009. Florindo, F., D. B. Karner, F. Marra, P. R. Renne, A. P. Roberts, and R. Weaver (2007), Radioisotopic age constraints for Glacial Terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy, Earth Planet. Sci. Lett., 256, 61–80, doi:10.1016/j. epsl.2007.01.014. Giorgetti, A., A. Crise, R. Laterza, L. Perini, M. Rebesco, and A. Camerlenghi (2003), Water masses and bottom boundary layer dynamics above a sediment drift of the Antarctic Peninsula Pacific Margin, Antarct. Sci., 15, 537–546, doi:10.1017/S0954102003001652. Guyodo, Y., and J.!P. Valet (1999), Global changes in intensity of the Earth’s magnetic field during the past 800 kyr, Nature, 399, 249–252, doi:10.1038/20420. Guyodo, Y., G. D. Acton, S. Brachfeld, and J. E. T. Channell (2001), A sedimentary paleomagnetic record of the Matuyama chron from the Western Antarctic margin (ODP Site 1101), Earth Planet. Sci. Lett., 191, 61–74, doi:10.1016/S0012-821X(01)00402-2. Harland, R., and C. J. Pudsey (1999), Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica, Mar. Micropaleontol., 37, 77–99, doi:10.1016/S0377-8398(99)00016-X. Harrison, R. J., and J. M. Feinberg (2008), FORCinel: An improved algorithm for calculating first!order reversal curve distributions using locally weighted regression smoothing, Geochem. Geophys. Geosyst., 9, Q05016, doi:10.1029/2008GC001987. Hawkes, I. J., M. W. Hounslow, C. J. Pudsey, and B. A. Maher (2003), Sediment dispersal pathways from the western Antarctic Peninsula during the last glacial period and the significance of temporal fluctuations in magnetic properties, Geophys. Res. Abstr., 5, 11,099. Heinrich, H. (1988), Origin and consequences of cycling ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quat. Res., 29, 142–152, doi:10.1016/0033-5894(88)90057-9. Hemming, S. R. (2004), Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128. Hernández!Molina, F. J., R. D. Larter, A. Maldonado, and J. Rodríguez! Fernández (2006), Evolution of the Antarctic Peninsula Pacific margin offshore from Adelaide Island since the late Miocene: An example of a glacial passive margin, Terra Antarct. Rep., 12, 81–90. Hillenbrand, C.!D., and W. Ehrmann (2002), Distribution of clay minerals in drift sediments on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096, Proc. Ocean Drill. Program Sci. Results, 178, 1–29, doi:10.2973/odp.proc.sr.178.224.2001. Hillenbrand, C.!D., and W. Ehrmann (2005), Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: Evidence from drift sediments, Global Planet. Change, 45, 165–191, doi:10.1016/j. gloplacha.2004.09.006. Hillenbrand, C.!D., A. Camerlenghi, E. A. Cowan, F. J. Hernández!Molina, R. G. Lucchi, M. Rebesco, and G. Uenzelmann!Neben (2008a), The present and past bottom!current flow regime around the sediment drifts on the continental rise west of Antarctic Peninsula, Mar. Geol., 255, 55–63, doi:10.1016/j.margeo.2008.07.004. Hillenbrand, C.!D., S. G. Moreton, A. Caburlotto, C. J. Pudsey, R. G. Lucchi, J. L. Smellie, S. Benetti, H. Grobe, J. B. Hunt, and R. D. Larter (2008b), Volcanic time!markers for Marine Isotopic Stages 6 and 5 in Southern Ocean sediments and Antarctic ice cores: Implications for tephra correlations between palaeoclimatic records, Quat. Sci. Rev., 27, 518–540, doi:10.1016/j.quascirev.2007.11.009. Horng, C.!S., and A. P. Roberts (2006), Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum, Earth Planet. Sci. Lett., 241, 750–762, doi:10.1016/j.epsl.2005.11.008. Hounslow, M. W., and B. A. Maher (1996), Quantitative extraction and analysis of carriers of magnetization in sediments, Geophys. J. Int., 124, 57–74, doi:10.1111/j.1365-246X.1996.tb06352.x. Hounslow, M. W., and B. A. Maher (1999), Laboratory procedures for quantitative extraction and analysis of magnetic minerals from sediments, in Environmental Magnetism, A Practical Guide, Tech. Guide, vol. 6, edited by J. Walden, F. Oldfield, and J. Smith, pp. 139–164, Quat. Res. Assoc., Lancaster, U. K. Hrouda, F. (1994), A technique for the measurements of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS!2 Apparatus and KLY!2 Kappabridge, Geophys. J. Int., 118, 604–612, doi:10.1111/ j.1365-246X.1994.tb03987.x. Intergovernmental Panel on Climate Change (IPCC) (2007), Summary for policymakers, in Climate Change 2007: The Physical Science Basis ! Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, New York. King, J. C., J. Turner, G. J. Marshall, W. M. Connolley, and T. A. Lachlan! Cope (2003), Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records, in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives, Antarct. Res. Ser., no. 79, edited by E. Domack et al., pp. 17–30, AGU, Washington, D. C. Kirschvink, J. L. (1980), The least!square line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718. Lowrie, W. (1990), Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature profiles, Geophys. Res. Lett., 17, 159–162, doi:10.1029/GL017i002p00159. Lucchi, R. G., and M. Rebesco (2007), Glacial contourites on the Antarctic Peninsula margin: Insight for palaeoenvironmental and palaeoclimatic conditions, Spec. Publ. Geol. Soc. London, 276, 111–127, doi:10.1144/ GSL.SP.2007.276.01.06. Lucchi, R. G., M. Rebesco, A. Camerlenghi, M. Busetti, L. Tomadin, G. Villa, D. Persico, C. Morigi, M. C. Bonci, and G. Giorgetti (2002), Mid!late Pleistocene glacimarine sedimentary processes of a high! latitude, deep!sea sediment drift (Antarctic Peninsula Pacific margin), Mar. Geol., 189, 343–370, doi:10.1016/S0025-3227(02)00470-X. Macrì, P., L. Sagnotti, R. G. Lucchi, and M. Rebesco (2006), A stacked record of relative geomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsula, Earth Planet. Sci. Lett., 252, 162–179, doi:10.1016/j.epsl.2006.09.037. Mazaud, A. (2005), User!friendly software for vector analysis of the magnetization of long sediment cores, Geochem. Geophys. Geosyst., 6, Q12006, doi:10.1029/2005GC001036. Nishitani, T., and M. Kono (1983), Curie temperatures and lattice constant of oxidized titanomagnetite, Geophys. J. R. Astron. Soc., 74, 585–600. Ó Cofaigh, C., J. A. Dowdeswell, and C. J. Pudsey (2001), Late Quaternary iceberg rafting along the Antarctic Peninsula continental rise and in the Weddell and Scotia Seas, Quat. Res., 56, 308–321, doi:10.1006/ qres.2001.2267. Paillard, D., L. Labeyrie, and P. Yiou (1996), Macintosh program performs time!series analysis, Eos Trans. AGU, 77(39), 379, doi:10.1029/ 96EO00259. Pan, Y., N. Petersen, A. F. Davila, L. Zhang, M. Winklhofer, Q. Liu, M. Hanzlik, and R. Zhu (2005), The detection of bacterial magnetite in recent sediments of Lake Chiemsee (southern Germany), Earth Planet. Sci. Lett., 232, 109–123, doi:10.1016/j.epsl.2005.01.006. Peters, C., and M. J. Dekkers (2003), Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size, Phys. Chem. Earth, 28, 659–667. Pike, C. R., A. P. Roberts, and K. L. Verosub (2001), First!order reversal curve diagrams and thermal relaxation effects in magnetic particles, Geophys. J. Int., 145, 721–730, doi:10.1046/j.0956-540x.2001.01419.x. Pudsey, C. J. (2000), Sedimentation on the continental rise west of the Antarctic Peninsula over the last three glacial cycles, Mar. Geol., 167, 313–338, doi:10.1016/S0025-3227(00)00039-6. Pudsey, C. J., and A. Camerlenghi (1998), Glacial!interglacial deposition on a sediment drift on the Pacific margin of the Antarctic Peninsula, Antarct. Sci., 10, 286–308, doi:10.1017/S0954102098000376. Rebesco, M., R. D. Larter, A. Camerlenghi, and P. F. Barker (1996), Giant sediment drifts on the continental rise west of the Antarctic Peninsula, Geo Mar. Lett., 16, 65–75, doi:10.1007/BF02202600. Rebesco, M., R. D. Larter, P. F. Barker, A. Camerlenghi, and L. E. Vanneste (1997), The history of sedimentation on the continental rise west of the Antarctic Peninsula, in Geology and Seismic Stratigraphy of the Antarctic Margin, Part 2, Antarct. Res. Ser., no. 71, edited by P. F. Barker and A. K. Cooper, pp. 29–49, AGU, Washington, D. C. Rebesco, M., A. Camerlenghi, and C. Zanolla (1998), Bathymetry and morphogenesis of the continental margin west of the Antarctic Peninsula, Terra Antarct., 5, 715–725. Rebesco, M., C. J. Pudsey, M. Canals, A. Camerlenghi, P. F. Barker, F. Estrada, and A. Giorgetti (2002), Sediment drifts and deep!sea channel systems, Antarctic Peninsula Pacific Margin, in Deep!Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics, edited by D. A. V. Stow et al., Mem. Geol. Soc. London, 22, 353–371. Rebesco, M., A. Camerlenghi, V. Volpi, C. Neagu,D. Accettella, B. Lindberg, A. Cova, F. Zgur, and the MAGICO party (2007), Interaction of processes and importance of contourites: Insights from the detailed morphology of sediment drift 7, Antarctica, in Economic and Palaeoceanographic Significance of Contourite Deposits, edited by A. R. Viana, and M. Rebesco, Geol. Soc. Spec. Publ., 276, 95–110. Roberts, A. P. (1995), Magnetic properties of sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 134, 227–236, doi:10.1016/0012-821X(95) 00131-U. Roberts, A. P., and M. Winklhofer (2004), Why are geomagnetic excursions not always recorded in sediments? Constraints from post!depositional remanent magnetization lock!in modelling, Earth Planet. Sci. Lett., 227, 345–359, doi:10.1016/j.epsl.2004.07.040. Roberts, A. P., J. S. Stoner, and C. Richter (1999), Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea, Mar. Geol., 153, 103–116, doi:10.1016/S0025-3227(98)00087-5. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First!order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475, doi:10.1029/ 2000JB900326. Roberts, A. P., W.!T. Jiang, F. Florindo, C.!S. Horng, and C. Laj (2005), Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy, Geophys. Res. Lett., 32, L05307, doi:10.1029/2004GL022137. Roberts, A. P., F. Florindo, J. C. Larrasoaña, M. A. O’Regan, and X. Zhao (2010), Complex polarity pattern at the former Plio!Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides,Earth Planet. Sci. Lett., 292, 98–111, doi:10.1016/j.epsl.2010. 01.025. Roberts, A. P., L. Chang, C. J. Rowan, C.!S. Horng, and F. Florindo (2011), Magnetic properties of sedimentary greigite (Fe3S4): An update, Rev. Geophys., 49, RG1002, doi:10.1029/2010RG000336. Rochette, P., G. Fillion, J.!L. Mattéi, and M. J. Dekkers (1990), Magnetic transition at 30–34 Kelvin in pyrrhotite: Insight into a widespread occurrence of this mineral in rocks, Earth Planet. Sci. Lett., 98, 319–328, doi:10.1016/0012-821X(90)90034-U. Rowan, C. J., and A. P. Roberts (2005), Tectonic and geochronological implications of variably timed magnetizations carried by authigenic greigite in marine sediments from New Zealand, Geology, 33, 553–556, doi:10.1130/G21382.1. Rowan, C. J., and A. P. Roberts (2006), Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett., 241, 119–137, doi:10.1016/j. epsl.2005.10.017. Sachs, J. P., and R. F. Anderson (2005), Increased productivity in the subantarctic ocean during Heinrich events, Nature, 434, 1118–1121, doi:10.1038/nature03544. Sagnotti, L., P. Macrì, A. Camerlenghi, and M. Rebesco (2001), Environmental magnetism of late Pleistocene sediments from the Pacific margin of the Antarctic Peninsula and interhemispheric correlation of climatic events, Earth Planet. Sci. Lett., 192, 65–80, doi:10.1016/S0012-821X (01)00438-1. Sagnotti, L., A. P. Roberts, R. Weaver, K. L. Verosub, F. Florindo, C. R. Pike, T. Clayton, and G. S. Wilson (2005), Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite, Geophys. J. Int., 160, 89–100, doi:10.1111/j.1365-246X.2005.02485.x. Stoner, J. S., J. E. T. Channell, and C. Hillaire!Marcel (1998), A 200 ka geomagnetic chronostratigraphy for the Labrador Sea: Indirect correlation of the sediment record to SPECMAP, Earth Planet. Sci. Lett., 159, 165–181, doi:10.1016/S0012-821X(98)00069-7. Stoner, J. S., C. Laj, J. E. T. Channell, and C. Kissel (2002), South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): Implications for inter!hemispheric correlation, Quat. Sci. Rev., 21, 1141–1151, doi:10.1016/S0277-3791(01)00136-6. Turner, J., S. R. Colwell, G. J. Marshall, T. A. Lachlan!Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid, and S. Iagovkina (2005), Antarctic climate change during the last 50 years, Int. J. Climatol., 25, 279–294, doi:10.1002/joc.1130. Uenzelmann!Neben, G. (2006), Depositional patterns at drift 7, Antarctic Peninsula: Along!slope versus down!slope sediment transport as indicators for oceanic currents and climatic conditions, Mar. Geol., 233, 49–62, doi:10.1016/j.margeo.2006.08.008. Venuti, A., and F. Florindo (2004), Magnetostratigraphy and environmental magnetism of two Quaternary deep!sea gravity cores from the west Pacific Southern Ocean, Geochem. Geophys. Geosyst., 5, Q12011, doi:10.1029/2004GC000810. Villa, G., D. Persico, M. C. Bonci, R. G. Lucchi, C. Morigi, and M. Rebesco (2003), Biostratigraphic characterization and Quaternary microfossil palaeoecology in sediment drifts west of the Antarctic Peninsula!implications for cyclic glacial!interglacial deposition, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 237–263, doi:10.1016/S0031-0182(03)00403-6. Weeks, R., C. Laj, L. Endignoux, M. Fuller, A. Roberts, R. Manganne, E. Blanchard, and W. Goree (1993), Improvements in long!core measurement techniques: Applications in palaeomagnetism and palaeoceanography, Geophys. J. Int., 114, 651–662, doi:10.1111/j.1365-246X.1993. tb06994.x.en_US
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen_US
dc.description.journalTypeJCR Journalen_US
dc.description.fulltextpartially_openen
dc.contributor.authorVenuti, A.-
dc.contributor.authorFlorindo, F.-
dc.contributor.authorCaburlotto, A.-
dc.contributor.authorHounslow, M. W.-
dc.contributor.authorHillenbrand, C.-D.-
dc.contributor.authorStrada, E.-
dc.contributor.authorTalarico, F. M.-
dc.contributor.authorCavallo, A.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.departmentIstituto Nazionale di Oceanografia e di Geofisica Sperimentale, Sgonico, Italy-
dc.contributor.departmentLancaster Environment Centre, Lancaster University, Lancaster, UK-
dc.contributor.departmentBritish Antarctic Survey, Cambridge, UK-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Siena, Siena, Italy-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia-
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
crisitem.author.deptBritish Antarctic Survey, Cambridge, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptINOGS - Borgo Grotta Gigante 42/c, Sgonico (TS)-
crisitem.author.dept2Dip. di Scienze della Terra, Università di Siena, Siena, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptLancaster Environment Centre, Lancaster University, Lancaster, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Papers Published / Papers in press
Files in This Item:
File Description SizeFormat 
Venuti et al 2011.pdf8.98 MBAdobe PDFView/Open
venuti_et_al.pdf253.11 kBAdobe PDFView/Open
Show simple item record

Page view(s)

215
Last Week
0
Last month
8
checked on Jan 17, 2018

Download(s)

331
checked on Jan 17, 2018

Google ScholarTM

Check

Altmetric