Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/704

Authors: Lombardi, A. M.*
Title: Probabilistic interpretationof «Bath's Law»
Issue Date: 2002
Series/Report no.: 45 (3-4)
URI: http://hdl.handle.net/2122/704
Keywords: magnitude distribution
cluster size
b-value
order statistics
Abstract: Assuming that, in a catalog, all the earthquakes with magnitude larger than or equal to a cutoff magnitude M c follow the Gutenberg-Richter Law, the compatibility of this hypothesis with «Bath’s Law» is examined. Consi-dering the mainshock M 0 and the largest aftershock M 1 of a sequence respectively as the first and the second largest order statistic of a sample of independent and identically distributed exponential random variables, the distribution of M 0 , M 1 and of their difference D 1 is evaluated. In particular, it is analyzed as the distribution of D 1 changes when only the sequences with the magnitude of the mainshock above a second threshold M c*•M c are considered. It results that the distributions of M 0 , M 1 and D 1 depend on the difference M c*•M c and on the number of events in the sequence. Moreover, the expected value of D 1 increases with increasing of M c*•M c for every value of N. Then it is shown that «Bath’s Law» could be ascribed to selection of data caused by the two thresholds M c and M c* and that it has a qualitative agreement with the model proposed. Key words Assuming that, in a catalog, all the earthquakes with magnitude larger than or equal to a cutoff magnitude M c follow the Gutenberg-Richter Law, the compatibility of this hypothesis with «Bath’s Law» is examined. Consi-dering the mainshock M 0 and the largest aftershock M 1 of a sequence respectively as the first and the second largest order statistic of a sample of independent and identically distributed exponential random variables, the distribution of M 0 , M 1 and of their difference D 1 is evaluated. In particular, it is analyzed as the distribution of D 1 changes when only the sequences with the magnitude of the mainshock above a second threshold M c*•M c are considered. It results that the distributions of M 0 , M 1 and D 1 depend on the difference M c*•M c and on the number of events in the sequence. Moreover, the expected value of D 1 increases with increasing of M c*•M c for every value of N. Then it is shown that «Bath’s Law» could be ascribed to selection of data caused by the two thresholds M c and M c* and that it has a qualitative agreement with the model propose.
Appears in Collections:04.05.08. Instruments and techniques
05.05.99. General or miscellaneous
Annals of Geophysics

Files in This Item:

File SizeFormatVisibility
455_472 Lombardo.pdf707.8 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA