Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7035
DC FieldValueLanguage
dc.contributor.authorallDe Santis, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallQamili, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCianchini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2011-06-27T05:55:34Zen
dc.date.available2011-06-27T05:55:34Zen
dc.date.issued2011-06en
dc.identifier.urihttp://hdl.handle.net/2122/7035en
dc.description.abstractThe geomagnetic field is a fundamental property of our planet: its study would allow us to understand those processes of Earth’s interior, which act in its outer core and produce the main field. Knowledge of whether the field is ergodic, i.e. whether time averages correspond to phase space averages, is an important question since, if this were true, it would point out a strong spatio-temporal coupling amongst the components of the dynamical system behind the present geomagnetic field generation. Another consequence would be that many computations, usually undertaken with many difficulties in the phase space, can be made in the conventional time domain. We analyse the temporal behaviour of the deviation between predictive and definitive geomagnetic global models for successive intervals from 1965 to 2010, finding a similar exponential growth with time. Also going back in time (at around 1600 and 1900 by using the GUFM1 model) confirms the same findings. This result corroborates previous chaotic analyses made in a reconstructed phase space from geomagnetic observatory time series, confirming the chaotic character of the recent geomagnetic field with no reliable prediction after around 6 years from definitive values, and disclosing the potentiality of estimating important entropic quantities of the field by time averages. Although more tests will be necessary, some of our analyses confirm the efforts to improve the representation of the geomagnetic field with more detailed secular variation and acceleration.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries3-4/186 (2011)en
dc.subjectGeomagnetic fielden
dc.subjectErgodicityen
dc.subjectChaosen
dc.subjectGeomagnetic field predictionen
dc.titleErgodicity of the recent geomagnetic fielden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber103-110en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theoryen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional modelsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic fielden
dc.identifier.doi10.1016/j.pepi.2011.04.008en
dc.relation.referencesAnderson, J.G., Brune, J.N., 1999. Probabilistic hazard analysis without the ergodic assumption. Seismol. Res. Lett 70, 19–23. Anosov, D.V., 2001. Ergodic theory. In: Hazewinkel, M. (Ed.), Encyclopaedia of Mathematics. Springer, ISBN 978-1556080104. Baranger, M., Latora, V., Rapisarda, A., 2002. Time evolution of thermodynamic entropy for conservative and dissipative chaotic maps. Chaos Soliton. Fract. 13, 471–478. Barraclough, D.R., De Santis, A., 1997. Some possible evidence for a chaotic geomagnetic field from observational data. Phys. Earth Planet. Int. 99, 207–220. Buonomano, V., Bartmann, F., 1986. Testing ergodic assumption in the low-intensity interferences experiments. Il Nuovo Cimento 95 (2), 99–108. Chen, Y.-H., Tsai, C.-C.P., 2002. A new method of the attenuation relationship with variance components. Bull. Seismol. Soc. Am. 92 (5), 1984–1991. Cross, M.C., Hohenberg, P.C., 1994. Spatiotemporal chaos. Science 263, 1569. De Santis, A., 2007. How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse? Phys. Earth Planet. Inter. 162, 217–226. De Santis, A., 2008. Erratum to ‘‘How persistent is the present trend of the geomagnetic field to decay and, possibly, to reverse?’’. Phys. Earth Planet. Inter. 170, 149. De Santis, A., Barraclough, D.R., Tozzi, R., 2002. Nonlinear variability of the recent geomagnetic field. Fractals 10, 297–303. De Santis, A., Barraclough, D.R., Tozzi, R., 2003. Spatial and temporal spectra of the geomagnetic field and their scaling properties. Phys. Earth Planet. Inter. 135, 125–134. De Santis, A., Tozzi, R., Gaya-Piqué, L.R., 2004. Information content and K-Entropy of the present geomagnetic field. Earth Planet. Science Lett. 218, 269–275. De Santis, A., Qamili, E., 2010. Shannon information of the geomagnetic field for the past 7000 years. Nonlinear Proc. Geophys. 17, 77–84. De Santis, A., Cianchini, G., Qamili, E., Frepoli, A., 2010. The 2009 L’Aquila (Central Italy) seismic sequence as a chaotic process. Tectonophysics 496, 44–52. Eckmann, J.P., Ruelle, D., 1985. Ergodic theory of chaos and strange attractors. Part I. Rev. Mod. Phys. 57 (3), 617–656. Egolf, D., 2000. Equilibrium regained: from nonequilibrium chaos to statistical mechanics. Science 287, 101–104. Finlay, C.C., Maus, S., Beggan, C.D., Hamoudi, M., Lowes, F.J., Olsen, N., Thebault, E., 2010. Evaluation of candidate geomagnetic field models for IGRF-11. Earth Planets Space 62, 787–804. Hongre, L., Sailhac, P., Alexandrescu, M., Dubois, J., 1999. Non linear and multifractal approaches of the geomagnetic field. Phys. Earth Planet. Inter. 110, 157–190. Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A 358, 957– 990. Kantz, H., Schreiber, T., 1997. Nonlinear Time Series Analysis. Cambridge University Press. Mandea, M., Holme, R., Pais, A., Pinheiro, K., Jackson, A., Verbanac, G., 2010. Geomagnetic jerks: rapid core field variations and core dynamics. Space Sci. Rev. 155, 147–175. Maus, S., Macmillan, S., Chernova, T., Choi, S., Dater, D., Golovkov, V., Lesur, V., Lowes, F., Luhr, H., Mai, W., McLean, S., Olsen, N., Rother, M., Sabaka, T., Thomson, A., Zvereva, T., 2005. The 10th-generation international geomagnetic reference field. Geophys. J. Int. 161, 561–565. Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D., Roth, C., 2006. Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophys. Geosyst. 7, Q07008, doi:10.1029/2006GC001269. Maus, S., Silva, L., Hulot, G., 2008. Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field? J. Geophys. Res. 113, B08102, doi:10.1029/2007JB005199. Maus, S., Manoj, C., Rauberg, J., Michaelis, I., Lühr, H., 2010. NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation POMME magnetic model. Earth Planets Space 62, 729–735. McLean, S., Macmillan, S., Maus, S., Lesur, V., Thomson, A., Dater, D., 2004. The US/ UK World Magnetic Model for 2005–2010. NOAA Technical Report NESDID/ NGDC-1. Olsen, N., Luhr, H., Sabaka, T.J., Mandea, M., 2006. CHAOS – a model of Earth’s magnetic field derived from CHAMP, Oersted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75. Olsen, N., Mandea, M., Sabaka, T.J., Tøffner-Clausen, L., 2009. CHAOS-2 – a geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179, 1477–1487. Paine, A.D.M., 1985. Ergodic reasoning in geomorphology: time for a review of the term? Prog. Phys. Geogr. 9 (1), 1–15. Sabaka, T.J., Olsen, N., Purucker, M.E., 2004. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159, 521– 547. Schuster, H.G., 1995. Deterministic Chaos: An Introduction, third ed. Wiley-VCH, Weinheim, p. 291. Silva, L., Maus, S., Hulot, G., Thebault, E., 2010. On the possibility of extending the IGRF predictive secular variation model to a higher SH degree. Earth Planets Space 62, 815–820. Sugihara, G., May, R.M., 1990. Nonlinear forecasting as a way of distinguish chaos from measurement error in time series. Nature 344, 734–741. Takens, F., 1981. Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (Eds.), Lecture Notes in Mathematics, vol. 898. Springer, Berlin, p. 366. Wales, D.J., 1991. Calculating the rate of loss information from chaotic time series by forecasting. Nature 350, 485–488. Walters, P., 1982. An Introduction to Ergodic Theory. Springer, New York. Woo, G., Wang, G.-Q., Tang, G., 2006. Insights from Parkfield array data for probabilistic risk modelling. In: Proceedings of the 8th US National Conference on Earthquake Engineering, San Francisco, CA, USA, Paper No. 219, p. 8.en
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDe Santis, A.en
dc.contributor.authorQamili, E.en
dc.contributor.authorCianchini, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-3941-656X-
crisitem.author.orcid0000-0003-2832-0068-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Ergodicity_PEPI2011.pdf424.61 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

5
checked on Feb 10, 2021

Page view(s) 5

447
checked on Apr 20, 2024

Download(s) 50

86
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric