Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7017
DC FieldValueLanguage
dc.contributor.authorallBurston, R.; University of Bath, Bath, United Kingdomen
dc.contributor.authorallAstin, I.; University of Bath, Bath, United Kingdomen
dc.contributor.authorallMitchell, C.; University of Bath, Bath, United Kingdomen
dc.contributor.authorallAlfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPedersen, T.; Space Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, USAen
dc.contributor.authorallSkone, S.; Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canadaen
dc.date.accessioned2011-06-01T10:37:08Zen
dc.date.available2011-06-01T10:37:08Zen
dc.date.issued2010-04-30en
dc.identifier.urihttp://hdl.handle.net/2122/7017en
dc.description.abstractA model is presented of the growth rate of turbulently generated irregularities in the electron concentration of northern polar cap plasma patches. The turbulence is generated by the short‐term fluctuations in the electric field imposed on the polar cap ionosphere by electric field mapping from the magnetosphere. The model uses an ionospheric imaging algorithm to specify the state of the ionosphere throughout. The growth rates are used to estimate mean amplitudes for the irregularities, and these mean amplitudes are compared with observations of the scintillation indices S4 and s by calculating the linear correlation coefficients between them. The scintillation data are recorded by GPS L1 band receivers stationed at high northern latitudes. A total of 13 days are analyzed, covering four separate magnetic storm periods. These results are compared with those from a similar model of the gradient drift instability (GDI) growth rate. Overall, the results show better correlation between the GDI process and the scintillation indices than for the turbulence process and the scintillation indices. Two storms, however, show approximately equally good correlations for both processes, indicating that there might be times when the turbulence process of irregularity formation on plasma patches may be the controlling one.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115(2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5544en
dc.subjectionospheric irregularitiesen
dc.subjectscintillationsen
dc.subjectGradient Drift Instabilityen
dc.titleTurbulent times in the northern polar ionosphere?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberA04310en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillationsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.identifier.doi10.1029/2009JA014813en
dc.relation.referencesBurston, R., I. Astin, C. Mitchell, L. Alfonsi, T. Pedersen, and S. Skone (2009), Correlation between scintillation indices and gradient drift wave amplitudes in the northern polar ionosphere, J. Geophys. Res., 114, A07309, doi:10.1029/2009JA014151. Chaturvedi, P. K., and S. L. Ossakow (1979), Non‐linear stabilization of the current convective instability in the diffuse aurora, Geophys. Res. Lett., 6(12), 957–959, doi:10.1029/GL006i012p00957. Chaturvedi, P. K., and S. L. Ossakow (1981), The current convective instability as applied to the auroral ionosphere, J. Geophys. Res., 86(A6), 4811–4814, doi:10.1029/JA086iA06p04811. Chaturvedi, P. K., et al. (1994), Effects of field line mapping on the gradient‐ drift instability in the coupled E‐region and F‐region high‐latitude ionosphere, Radio Sci., 29(1), 317–335, doi:10.1029/93RS02124. Coley, W. R., and R. A. Heelis (1995), Adaptive identification and characterization of polar ionization patches, J. Geophys. Res., 100(A12), 23,819–23,827, doi:10.1029/95JA02700. Davies, K. (1990), Ionospheric Radio, Peter Peregrinus, London, U. K. Gondarenko, N. A., and P. N. Guzdar (1999), Gradient drift instability in high latitude plasma patches: Ion inertial effects, Geophys. Res. Lett., 26(22), 3345–3348, doi:10.1029/1999GL003647. Gondarenko, N. A., and P. N. Guzdar (2001), Three‐dimensional structuring characteristics of high‐latitude plasma patches, J. Geophys. Res., 106(A11), 24,611–24,620, doi:10.1029/2000JA000440. Gondarenko, N. A., and P. N. Guzdar (2004a), Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high‐latitude ionosphere, J. Geophys. Res., 109, A09301, doi:10.1029/2004JA010504. Gondarenko, N. A., and P. N. Guzdar (2004b), Density and electric field fluctuations associated with the gradient drift instability in the high‐latitude ionosphere, Geophys. Res. Lett., 31, L11802, doi:10.1029/2004GL019703. Gondarenko, N. A., and P. N. Guzdar (2006a), Nonlinear three‐dimensional simulations of mesoscale structuring by multiple drives in high‐latitude plasma patches, J. Geophys. Res., 111, A08302, doi:10.1029/ 2006JA011701. Gondarenko, N. A., and P. N. Guzdar (2006b), Simulations of the scintillation‐ producing irregularities in high‐latitude plasma patches, Geophys. Res. Lett., 33, L22107, doi:10.1029/2006GL028033. Gondarenko, N. A., et al. (2003), Structuring of high latitude plasma patches with variable drive, Geophys. Res. Lett., 30(4), 1165, doi:10.1029/2002GL016437. Gondarenko, N. A., S. L. Ossakow, and G. M. Milikh (2005), Generation and evolution of density irregularities due to self‐focusing in ionospheric modifications, J. Geophys. Res., 110, A09304, doi:10.1029/ 2005JA011142. Hargreaves, J. K. (1992), The Solar‐Terrestrial Environment, Cambridge Univ. Press, Cambridge, U. K. Huba, J.D. (1984), Long wavelength limit of the current convective instability, J. Geophys. Res., 89(A5), 2931–2935, doi:10.1029/JA089iA05p02931. Huba, J. D., et al. (1985), Ionospheric turbulence: Interchange instabilities and chaotic fluid behavior, Geophys. Res. Lett., 12(1), 65–68, doi:10.1029/GL012i001p00065. Hunsucker, R. D., and J. K. Hargreaves (2003), The High‐Latitude Ionosphere and Its Effects on Radio Propagation, 617 pp., Cambridge Univ. Press, Cambridge, U. K. Kaplan, E. D. (1996), Understanding GPS: Principles and Applications, Artech, Boston, Mass. Kelley, M. C. (1989), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 1 ed., Academic, San Diego, Calif. Kelley, M. C. (2009), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 2 ed., Academic, San Diego, Calif. Kersley, L., et al. (1989), Scintillation and Eiscat investigations of gradientdrift irregularities in the high‐latitude ionosphere, J. Atmos. Terr. Phys., 51(4), 241–247, doi:10.1016/0021-9169(89)90075-5. Kintner, P. M., and C. E. Seyler (1985), The status of observations and theory of high‐latitude ionospheric and magnetospheric plasma turbulence, Space Sci. Rev., 41(1–2), 91–129, doi:10.1007/BF00241347. Kivanç, Ö., and R. A. Heelis (1997), Structures in ionospheric number density and velocity associated with polar cap ionization patches, J. Geophys. Res., 102(A1), 307–318, doi:10.1029/96JA03141. Kunitsyn, V. E., and E. D. Tereshchenko (1992), Determination of the turbulent spectrum in the ionosphere by a tomographic method, J. Atmos. Terr. Phys., 54(10), 1275–1282, doi:10.1016/0021-9169(92)90036-K. Macmillan, S., and S. Maus (2005), International geomagnetic reference field: The tenth generation, Earth Planets Space, 57(12), 1135–1140. Maus, S., et al. (2005a), The 10th generation international geomagnetic reference field, Phys. Earth Planet. Inter., 151(3–4), 320–322, doi:10.1016/j.pepi.2005.03.006. Maus, S., et al. (2005b), The 10th ‐generation international geomagnetic reference field, Geophys. J. Int., 161(3), 561–565, doi:10.1111/j.1365- 246X.2005.02641.x. Maus, S., et al. (2005c), NGDC/GFZ candidate models for the 10th generation International Geomagnetic Reference Field, Earth Planets Space, 57(12), 1151–1156. Mounir, H., C. J. Cerisier, A. Berthelier, D. Lagoutte, and C. Beghin (1991), The small‐scale turbulent structure of the high latitude ionosphere: ARCAD‐AUREOL‐3 observations, Ann. Geophys., 9, 725–737. Ossakow, S. L., and P. K. Chaturvedi (1979), Current convective instability in the diffuse aurora, Geophys. Res. Lett., 6(4), 332–334, doi:10.1029/ GL006i004p00332. Sojka, J. J., et al. (1998), Gradient drift instability growth rates from globalscale modeling of the polar ionosphere, Radio Sci., 33(6), 1915–1928, doi:10.1029/98RS02490. Spencer, P. S. J., and C. N. Mitchell (2007), Imaging of fast moving electron‐ density structures in the polar cap, Ann. Geophys., 50, 427–434. Zvezdin, V. N., and S. V. Fridman (1992), Regimes of ionospheric turbulence from fractal analysis of satellite radio signal scintillations, J. Atmos. Terr. Phys., 54(7–8), 957–962, doi:10.1016/0021-9169(92)90061-O.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorBurston, R.en
dc.contributor.authorAstin, I.en
dc.contributor.authorMitchell, C.en
dc.contributor.authorAlfonsi, Lu.en
dc.contributor.authorPedersen, T.en
dc.contributor.authorSkone, S.en
dc.contributor.departmentUniversity of Bath, Bath, United Kingdomen
dc.contributor.departmentUniversity of Bath, Bath, United Kingdomen
dc.contributor.departmentUniversity of Bath, Bath, United Kingdomen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentSpace Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, USAen
dc.contributor.departmentDepartment of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Canadaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Bath, UK-
crisitem.author.deptUniversity of Bath, UK-
crisitem.author.dept3Department of Electronic and Electrical Engineering, University of Bath-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSpace Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, USA-
crisitem.author.deptDepartment of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada-
crisitem.author.orcid0000-0003-4989-9187-
crisitem.author.orcid0000-0002-1806-9327-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Burston et al_JGR.pdf743.66 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

14
checked on Feb 7, 2021

Page view(s)

157
checked on Apr 17, 2024

Download(s)

18
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric