Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7012
DC FieldValueLanguage
dc.contributor.authorallRoberts, A. P.; National Oceanography Centre, Southampton, University of Southampton, Southampton, UK and Now at Research School of Earth Sciences, Australian National University, Canberra, ACT, Australiaen
dc.contributor.authorallChang, L.; National Oceanography Centre, Southampton, University of Southampton, Southampton, UKen
dc.contributor.authorallRowan, C. J.; National Oceanography Centre, Southampton, University of Southampton, Southampton, UK and Now at School of GeoSciences, University of Edinburgh, Edinburgh, UKen
dc.contributor.authorallHorng, C.‐S.; Institute of Earth Sciences, Academia Sinica, Taipei, Taiwanen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2011-05-27T10:02:19Zen
dc.date.available2011-05-27T10:02:19Zen
dc.date.issued2011-01-29en
dc.identifier.urihttp://hdl.handle.net/2122/7012en
dc.description.abstractGreigite (Fe3S4) is an authigenic ferrimagnetic mineral that grows as a precursor to pyrite during early diagenetic sedimentary sulfate reduction. It can also grow at any time when dissolved iron and sulfide are available during diagenesis. Greigite is important in paleomagnetic, environmental, biological, biogeochemical, tectonic, and industrial processes. Much recent progress has been made in understanding its magnetic properties. Greigite is an inverse spinel and a collinear ferrimagnet with antiferromagnetic coupling between iron in octahedral and tetrahedral sites. The crystallographic c axis is the easy axis of magnetization, with magnetic properties dominated by magnetocrystalline anisotropy. Robust empirical estimates of the saturation magnetization, anisotropy constant, and exchange constant for greigite have been obtained recently for the first time, and the first robust estimate of the low‐field magnetic susceptibility is reported here. The Curie temperature of greigite remains unknown but must exceed 350°C. Greigite lacks a low‐temperature magnetic transition. On the basis of preliminary micromagnetic modeling, the size range for stable single domain behavior is 17–200 nm for cubic crystals and 17–500 nm for octahedral crystals. Gradual variation in magnetic properties is observed through the pseudo‐single‐domain size range. We systematically document the known magnetic properties of greigite (at high, ambient, and low temperatures and with alternating and direct fields) and illustrate how grain size variations affect magnetic properties. Recognition of this range of magnetic properties will aid identification and constrain interpretation of magnetic signals carried by greigite, which is increasingly proving to be environmentally important and responsible for complex paleomagnetic records, including widespread remagnetizations.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofReviews of Geophysicsen
dc.relation.ispartofseries/49 (2011)en
dc.relation.isversionofhttp://hdl.handle.net/2122/6555en
dc.subjectgreigiteen
dc.titleMagnetic properties of sedimentary greigite (Fe3S4): an updateen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberRG1002en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1029/2010RG000336en
dc.relation.referencesArató, B., Z. Szányi, C. Flies, D. Schüler, R. B. Frankel, P. R. Buseck, and M. Pósfai (2005), Crystal‐size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker, Am. Mineral., 90, 1233–1241, doi:10.2138/ am.2005.1778. Ariztegui, D., and J. Dobson (1996), Magnetic investigations of framboidal greigite formation: A record of anthropogenic environmental changes in eutrophic Lake St Moritz, Switzerland, Holocene, 6, 235–241, doi:10.1177/095968369600600209. Aubourg, C., and P. Robion (2002), Composite ferromagnetic fabrics (magnetite, greigite) measured by AMS and partial AARM in weakly strained sandstones fromwesternMakran, Iran, Geophys. J. Int., 151, 729–737, doi:10.1046/j.1365-246X.2002.01800.x. Babinszki, E., E. Marton, P. Marton, and L. F. Kiss (2007), Widespread occurrence of greigite in the sediments of Lake Pannon: Implications for environment and magnetostratigraphy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 626–636, doi:10.1016/ j.palaeo.2007.06.001. Banerjee, S. K., J. King, and J. Marvin (1981), A rapid method for magnetic granulometry with applications to environmental studies, Geophys. Res. Lett., 8, 333–336, doi:10.1029/ GL008i004p00333. Bazylinski, D. A., and R. B. Frankel (2004), Magnetosome formation in prokaryotes, Nat. Rev. Microbiol., 2, 217–230, doi:10.1038/nrmicro842. Bazylinski, D. A., R. B. Frankel, A. J. Garratt‐Reed, and S. Mann (1990), Biomineralization of iron sulfides in magnetotactic bacteria from sulfidic environments, in Iron Biominerals, edited by R. B. Frankel and R. P. Blakemore, pp. 239–255, Plenum, New York. Bazylinski, D. A., B. R. Heywood, S. Mann, and R. B. Frankel (1993), Fe3O4 and Fe3S4 in a bacterium, Nature, 366, 218, doi:10.1038/366218a0. Bazylinski, D. A., R. B. Frankel, B. R. Heywood, S. Mann, J. W. King, P. L. Donaghay, and A. K. Hanson (1995), Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium, Appl. Environ. Microbiol., 61, 3232–3239. Benning, L. G., R. T. Wilkin, and H. L. Barnes (2000), Reaction pathways in the Fe‐S system below 100°C, Chem. Geol., 167, 25–51, doi:10.1016/S0009-2541(99)00198-9. Berner, R. A. (1970), Sedimentary pyrite formation, Am. J. Sci., 268, 1–23, doi:10.2475/ajs.268.1.1. Berner, R. A. (1984), Sedimentary pyrite formation: An update, Geochim. Cosmochim. Acta, 48, 605–615, doi:10.1016/0016- 7037(84)90089-9. Blanchet, C. L., N. Thouveny, and L. Vidal (2009), Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara basin: Implications for paleoenvironmental changes during the past 35 ka, Paleoceanography, 24, PA2224, doi:10.1029/2008PA001719. Borradaile, G. J., and M. Jackson (2004), Anisotropy of magnetic susceptibility (AMS): Magnetic petrofabrics of deformed rocks, in Magnetic Fabric: Methods and Applications, edited by F. Martin‐Hernandez et al., Geol. Soc. Spec. Publ., 238, 299–360. Bracci, G., D. Dalena, and P. Orlandi (1985), La greigite di Mentana, Lazio, Rend. Soc. Ital. Mineral. Petrol., 40, 295–298. Braga, M., S. K. Lie, C. A. Taft, and W. A. Lester Jr. (1988), Electronic structure, hyperfine interactions, and magnetic properties for iron octahedral sulfides, Phys. Rev., 38, 10,837–10,851, doi:10.1103/PhysRevB.38.10837. Carvallo, C., and A. R. Muxworthy (2006), Low‐temperature firstorder reversal curve (FORC) diagrams for synthetic and natural samples, Geochem. Geophys. Geosyst., 7, Q09003, doi:10.1029/ 2006GC001299. Carvallo, C., A. R. Muxworthy, D. J. Dunlop, and W. Williams (2003), Micromagnetic modeling of first‐order reversal curve (FORC) diagrams for single‐domain and pseudo‐single‐domain magnetite, Earth Planet. Sci. Lett., 213, 375–390, doi:10.1016/ S0012-821X(03)00320-0. Chang, L., A. P. Roberts, A. R. Muxworthy, Y. Tang, Q. Chen, C. J. Rowan, Q. Liu, and P. Pruner (2007), Magnetic characteristics of synthetic pseudo‐single‐domain and multi‐domain greigite (Fe3S4), Geophys. Res. Lett., 34, L24304, doi:10.1029/ 2007GL032114. Chang, L., A. P. Roberts, Y. Tang, B. D. Rainford, A. R. Muxworthy, and Q. Chen (2008), Fundamental magnetic parameters from pure synthetic greigite (Fe3S4), J. Geophys. Res., 113, B06104, doi:10.1029/2007JB005502. Chang, L., B. D. Rainford, J. R. Stewart, C. Ritter, A. P. Roberts, Y. Tang, and Q. Chen (2009a), Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction, J. Geophys. Res., 114, B07101, doi:10.1029/ 2008JB006260. Chang, L., A. P. Roberts, C. J. Rowan, Y. Tang, P. Pruner, Q. Chen, and C. S. Horng (2009b), Low‐temperature magnetic properties of greigite (Fe3S4), Geochem. Geophys. Geosyst., 10, Q01Y04, doi:10.1029/2008GC002276. Chen, X. Y., X. F. Zhang, J. X. Wan, Z. H. Wang, and Y. T. Qian (2005), Selective fabrication of metastable greigite (Fe3S4) nanocrystallites and its magnetic properties through a simple solutionbased route, Chem. Phys. Lett., 403, 396–399, doi:10.1016/j. cplett.2005.01.050. Chikazumi, S. (1964), Physics of Magnetism, 554 pp., John Wiley, New York. Coey, J. M. D., M. R. Spender, and A. H. Morrish (1970), The magnetic structure of the spinel, Fe3S4, Solid State Commun., 8, 1605–1608, doi:10.1016/0038-1098(70)90473-4. Crockford, R. H., and I. R. Willett (1995), Drying and oxidation effects on the magnetic properties of sulfidic material during oxidation, Aust. J. Soil Res., 33, 19–29, doi:10.1071/SR9950019. Cutter, G. A., and R. S. Kluckhohn (1999), The cycling of particulate carbon, nitrogen, sulfur, and sulfur species (iron monosulfide, greigite, pyrite, and organic sulfur) in the water columns of Framvaren Fjord and the Black Sea, Mar. Chem., 67, 149–160, doi:10.1016/S0304-4203(99)00056-0. Day, R., M. Fuller, and V. A. Schmidt (1977), Magnetic hysteresis properties of synthetic titanomagnetites, Phys. Earth Planet. Inter., 13, 260–267, doi:10.1016/0031-9201(77)90108-X. de Boer, C. B., and M. J. Dekkers (1998), Thermomagnetic behaviour of haematite and goethite as a function of grain size in various non‐saturating magnetic fields, Geophys. J. Int., 133, 541–552, doi:10.1046/j.1365-246X.1998.00522.x. Dekkers, M. J. (1989), Magnetic properties of natural pyrrhotite. II. High‐ and low‐temperature behaviour of Jrs and TRM as function of grain size, Phys. Earth Planet. Inter., 57, 266–283, doi:10.1016/0031-9201(89)90116-7. Dekkers, M. J., and M. A. A. Schoonen (1996), Magnetic properties of hydrothermally synthesised greigite (Fe3S4)—I. Rock magnetic parameters at room temperature, Geophys. J. Int., 126, 360–368, doi:10.1111/j.1365-246X.1996.tb05296.x. Dekkers, M. J., J.‐L. Mattéi, G. Fillion, and P. Rochette (1989), Grain‐size dependence of the magnetic behavior of pyrrhotite during its low‐temperature transition at 34 K, Geophys. Res. Lett., 16, 855–858, doi:10.1029/GL016i008p00855. Dekkers, M. J., H. F. Passier, and M. A. A. Schoonen (2000), Magnetic properties of hydrothermally synthesised greigite (Fe3S4)— II. High‐ and low‐temperature characteristics, Geophys. J. Int., 141, 809–819, doi:10.1046/j.1365-246x.2000.00129.x. Devey, A. J., R. Grau‐Crespo, and N. H. de Leeuw (2009), Electronic and magnetic structure of Fe3S4: GGA + U investigation, Phys. Rev. B, 79, 195126, doi:10.1103/PhysRevB.79.195126. Diaz Ricci, J. C., and J. L. Kirschvink (1992), Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations, J. Geophys. Res., 97, 17,309–17,315, doi:10.1029/92JB01290. Dickens, G. R., M. M. Castillo, and J. C. G. Walker (1997), A blast of gas in the latest Paleocene: Simulating first‐order effects of massive dissociation of oceanic methane hydrate, Geology, 25, 259–262, doi:10.1130/0091-7613(1997)025<0259: ABOGIT>2.3.CO;2. Diester‐Haass, L., C. Robert, and H. Chamley (1998), Paleoproductivity and climate variations during sapropel deposition in the eastern Mediterranean Sea, Proc. Ocean Drill. Program Sci. Results, 160, 227–248. Doss, B. N. (1912a), Über die natur und zusammensetzung des Miocänen tonen der gouvernements Samara auftretenden Schwefeleisens, Neues Jahrb. Mineral., A33, 662–713. Doss, B. N. (1912b), Melnikowit, ein neues eisenbisulfid, und seine bedeutung für genesis der Kieslagerstätten, Z. Prakt. Geol., 20, 453–483. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/ 2001JB000486. Dunlop, D. J., and Ö. Özdemir (1997), Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, Cambridge, U. K. Egli, R., A. P. Chen, M. Winklhofer, K. P. Kodama, and C. S. Horng (2010), Detection of noninteracting single domain particles using first‐order reversal curve diagrams, Geochem. Geophys. Geosyst., 11, Q01Z11, doi:10.1029/2009GC002916. Enkin, R. J., J. Baker, D. Nourgaliev, P. Iassonov, and T. S. Hamilton (2007), Magnetic hysteresis parameters and Day plot analysis to characterize diagenetic alteration in gas‐hydrate‐bearing sediments, J. Geophys. Res., 112, B06S90, doi:10.1029/ 2006JB004638. Farina, M., D. M. S. Esquivel, and H. G. P. Lins de Barros (1990), Magnetic iron‐sulphur crystals from a magnetotactic microorganism, Nature, 343, 256–258, doi:10.1038/343256a0. Fassbinder, J. W. E., and H. Stanjek (1994), Magnetic properties of biogenic soil greigite (Fe3S4), Geophys. Res. Lett., 21, 2349– 2352, doi:10.1029/94GL02506. Fell, V., and M. Ward (1998), Iron sulphides: Corrosion products on artifacts from waterlogged deposits, in Metal 98: Proceedings of the International Conference on Metals Conservation, edited by W. Mourey and L. Robbiola, pp. 111–115, James and James, Newbury, U. K. Florindo, F., and F. Marra (1995), A revision of the stratigraphy for the Middle Pleistocene continental deposits of Rome (central Italy): Palaeomagnetic data, Ann. Geofis., 38, 177–188. Florindo, F., and L. Sagnotti (1995), Palaeomagnetism and rock magnetism at the upper Pliocene Valle Ricca (Rome, Italy) section, Geophys. J. Int., 123, 340–354, doi:10.1111/j.1365-246X. 1995.tb06858.x. Florindo, F., S. M. Bohaty, P. S. Erwin, C. Richter, A. P. Roberts, P. A. Whalen, and J. M. Whitehead (2003), Magnetobiostratigraphic chronology and palaeoenvironmental history of Cenozoic sequences from ODP sites 1165 and 1166, Prydz Bay, Antarctica, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 69–100, doi:10.1016/S0031-0182(03)00395-X. Florindo, F., D. B. Karner, F. Marra, P. R. Renne, A. P. Roberts, and R. Weaver (2007), Radioisotopic age constraints for Glacial Terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy, Earth Planet. Sci. Lett., 256, 61–80, doi:10.1016/j.epsl.2007.01.014. Frank, U., N. R. Nowaczyk, and J. F. W. Negendank (2007a), Palaeomagnetism of greigite bearing sediments from the Dead Sea, Israel, Geophys. J. Int., 168, 904–920, doi:10.1111/ j.1365-246X.2006.03263.x. Frank, U., N. R. Nowaczyk, and J. F. W. Negendank (2007b), Rock magnetism of greigite bearing sediments from the Dead Sea, Israel, Geophys. J. Int., 168, 921–934, doi:10.1111/j.1365- 246X.2006.03273.x. Fu, Y., T. von Dobeneck, C. Franke, D. Heslop, and S. Kasten (2008), Rock magnetic identification and geochemical process models of greigite formation in Quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A), Earth Planet. Sci. Lett., 275, 233–245, doi:10.1016/j.epsl.2008.07.034. García, J., and G. Subías (2004), The Verwey transition—A new perspective, J. Phys. Condens. Matter, 16, R145–R178, doi:10.1088/0953-8984/16/7/R01. Giovanoli, F. (1979), A comparison of the magnetization of detrital and chemical sediments from Lake Zurich, Geophys. Res. Lett., 6, 233–235, doi:10.1029/GL006i004p00233. Goffredi, S. K., A. Wáren, V. C. Orphan, C. L. Van Dover, and R. C. Vrijenhoek (2004), Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean, Appl. Environ. Microbiol., 70, 3082–3090, doi:10.1128/AEM.70.5.3082-3090.2004. Goodenough, J. B., and G. A. Fatseas (1982), Mössbauer 57Fe isomer shift as a measure of valence in mixed‐valence iron sulfides, J. Solid State Chem., 41, 1–22, doi:10.1016/0022-4596(82) 90028-7. Hall, F. R., S. Cisowski, and J. W. King (1997), Magnetic hysteresis properties of fine‐grained magnetic iron sulfide nodules and crusts on the Amazon Fan, Proc. Ocean Drill. Program Sci. Results, 155, 245–249. Hallam, D. F., and B. A. Maher (1994), A record of reversed polarity carried by the iron sulphide greigite in British early Pleistocene sediments, Earth Planet. Sci. Lett., 121, 71–80, doi:10.1016/0012-821X(94)90032-9. Han, W., and M. Y. Gao (2008), Investigations on iron sulfide nanosheets prepared via a single‐source precursor approach, Cryst. Growth Des., 8, 1023–1030, doi:10.1021/cg701075u. He, Z. B., S. H. Yu, X. Y. Zhou, X. G. Li, and J. F. Qu (2006), Magnetic‐field‐induced phase‐selective synthesis of ferrosulfide microrods by a hydrothermal process: Microstructure control and magnetic properties, Adv. Funct. Mater., 16, 1105–1111, doi:10.1002/adfm.200500580. Heslop, D., M. J. Dekkers, P. P. Kruiver, and I. H. M. van Oorschot (2002), Analysis of isothermal remanent magnetization acquisition curves using the expectation‐maximization algorithm, Geophys. J. Int., 148, 58–64, doi:10.1046/j.0956-540x. 2001.01558.x. Heslop, D., G. McIntosh, and M. J. Dekkers (2004), Using time‐ and temperature‐dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions, Geophys. J. Int., 157, 55–63, doi:10.1111/j.1365-246X.2004.02155.x. Heywood, B. R., D. A. Bazylinski, A. Garratt‐Reed, S. Mann, and R. B. Frankel (1990), Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria, Naturwissenschaften, 77, 536–538, doi:10.1007/BF01139266. Heywood, B. R., S. Mann, and R. B. Frankel (1991), Structure, morphology and growth of biogenic greigite (Fe3S4), Mater. Res. Soc. Symp. Proc., 218, 93–108. Hilton, J. (1990), Greigite and the magnetic properties of sediments, Limnol. Oceanogr., 35, 509–520, doi:10.4319/lo.1990. 35.2.0509. Hoffmann, V. (1992), Greigite (Fe3S4): Magnetic properties and first domain observations, Phys. Earth Planet. Inter., 70, 288–301, doi:10.1016/0031-9201(92)90195-2. Horng, C. S., and K. H. Chen (2006), Complicated magnetic mineral assemblages in marine sediments offshore of southwestern Taiwan: Possible influence of methane flux on the early diagenetic process, Terr. Atmos. Oceanic Sci., 17, 1009–1026. Horng, C. S., J. C. Chen, and T. Q. Lee (1992a), Variations in magnetic minerals from two Plio‐Pleistocene marine‐deposited sections, southwestern Taiwan, J. Geol. Soc. China, 35, 323–335. Horng, C. S., C. Laj, T. Q. Lee, and J. C. Chen (1992b), Magnetic characteristics of sedimentary rocks from the Tsengwen‐chi and Erhjen‐chi sections in southwestern Taiwan, Terr. Atmos. Oceanic Sci., 3, 519–532. Horng, C. S., M. Torii, K. S. Shea, and S. J. Kao (1998), Inconsistent magnetic polarities between greigite‐ and pyrrhotite/magnetitebearing marine sediments from the Tsailiao‐chi section, southwestern Taiwan, Earth Planet. Sci. Lett., 164, 467–481, doi:10.1016/S0012-821X(98)00239-8. Housen, B. A., and R. J. Musgrave (1996), Rock‐magnetic signature of gas hydrates in accretionary prism sediments, Earth Planet. Sci. Lett., 139, 509–519, doi:10.1016/0012-821X(95) 00245-8. Hrouda, F. (1994), A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS‐2 apparatus and KLY‐2 Kappabridge, Geophys. J. Int., 118, 604–612, doi:10.1111/j.1365-246X.1994.tb03987.x. Hu, S., E. Appel, V. Hoffmann, W. W. Schmahl, and S. Wang (1998), Gyromagnetic remanence acquired by greigite (Fe3S4) during static three‐axis alternating field demagnetization, Geophys. J. Int., 134, 831–842, doi:10.1046/j.1365-246x.1998. 00627.x. Hu, S., A. Stephenson, and E. Appel (2002), A study of gyroremanent magnetisation (GRM) and rotational remanent magnetisation (RRM) carried by greigite from lake sediments, Geophys. J. Int., 151, 469–474, doi:10.1046/j.1365-246X.2002.01793.x. Hunger, S., and L. G. Benning (2007), Greigite: A true intermediate on the polysulfide pathway to pyrite, Geochem. Trans., 8, article 1, doi:10.1186/1467-4866-8-1. Hunt, C. P., B. M. Moskowitz, and S. K. Banerjee (1995), Magnetic properties of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants, edited by T. J. Ahrens, pp. 189–204, AGU, Washington, D. C. Hüsing, S. K., M. J. Dekkers, C. Franke, and W. Krijgsman (2009), The Tortonian reference section at Monte dei Corvi (Italy): Evidence for early remanence acquisition in greigite‐bearing sediments, Geophys. J. Int., 179, 125–143, doi:10.1111/j.1365- 246X.2009.04301.x. Jelinowska, A., P. Tucholka, F. Guichard, I. Lefèvre, D. Badaut‐ Trauth, F. Chalié, F. Gasse, N. Tribovillard, and A. Desprairies (1998), Mineral magnetic study of Late Quaternary south Caspian Sea sediments: Palaeoenvironmental implications, Geophys. J. Int., 133, 499–509, doi:10.1046/j.1365-246X.1998.00536.x. Jiang, W. T., C. S. Horng, A. P. Roberts, and D. R. Peacor (2001), Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite, Earth Planet. Sci. Lett., 193, 1–12, doi:10.1016/S0012-821X(01)00497-6. Kao, S. J., C. S. Horng, A. P. Roberts, and K. K. Liu (2004), Carbonsulfur‐ iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation, Chem. Geol., 203, 153–168, doi:10.1016/j. chemgeo.2003.09.007. Kasama, T., M. Pósfai, R. K. K. Chong, A. P. Finlayson, P. R. Buseck, R. B. Frankel, and R. E. Dunin‐Borkowski (2006), Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral., 91, 1216–1229, doi:10.2138/am.2006.2227. Kasten, S., T. Freudenthal, F. X. Gingele, and H. D. Schulz (1998), Simultaneous formation of iron‐rich layers at different redox boundaries in sediments of the Amazon deep‐sea fan, Geochim. Cosmochim. Acta, 62, 2253–2264, doi:10.1016/S0016-7037(98) 00093-3. Kennett, J. P., K. G. Cannariato, I. L. Hendy, and R. J. Behl (2000), Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials, Science, 288, 128–133, doi:10.1126/science.288.5463.128. Kopp, R. E., C. Z. Nash, A. Kobayashi, B. P. Weiss, D. A. Bazylinski, and J. L. Kirschvink (2006), Ferromagnetic resonance spectroscopy for assessment of magnetic anisotropy and magnetostatic interactions: A case study of mutant magnetotactic bacteria, J. Geophys. Res., 111, B12S25, doi:10.1029/2006JB004529. Krs, M., M. Krsová, P. Pruner, A. Zeman, F. Novák, and J. Jansa (1990), A petromagnetic study of Miocene rocks bearing microorganic material and the magnetic mineral greigite (Sokolov and Cheb basins, Czechoslovakia), Phys. Earth Planet. Inter., 63, 98–112, doi:10.1016/0031-9201(90)90064-5. Krs, M., M. Krsová, L. Koulíková, P. Pruner, and F. Valín (1992), On the applicability of oil shale to paleomagnetic investigations, Phys. Earth Planet. Inter., 70, 178–186, doi:10.1016/0031-9201 (92)90180-4. Kruiver, P. P., M. J. Dekkers, and D. Heslop (2001), Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization, Earth Planet. Sci. Lett., 189, 269–276, doi:10.1016/S0012-821X(01)00367-3. Krupp, R. E. (1991), Smythite, greigite, and mackinawite: New observations on natural low‐temperature iron sulfides, in Source, Transport and Deposition of Metals, edited by M. Pagel and J. L. Leroy, pp. 193–195, Balkema, Rotterdam, Netherlands. Krupp, R. E. (1994), Phase relations and phase transformations between the low‐temperature iron sulfides mackinawite, greigite, and smythite, Eur. J. Mineral., 6, 265–278. Larrasoaña, J. C., A. P. Roberts, J. S. Stoner, C. Richter, and R. Wehausen (2003), A new proxy for bottom‐water ventilation based on diagenetically controlled magnetic properties of eastern Mediterranean sapropel‐bearing sediments, Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 221–242, doi:10.1016/ S0031-0182(02)00607-7. Larrasoaña, J. C., A. P. Roberts, R. J. Musgrave, E. Gràcia, E. Piñero, M. Vega, and F. Martínez‐Ruiz (2007), Diagenetic formation of greigite and pyrrhotite in marine sedimentary systems containing gas hydrates, Earth Planet. Sci. Lett., 261, 350–366, doi:10.1016/j.epsl.2007.06.032. Letard, I., P. Sainctavit, N. Menguy, J.‐P. Valet, A. Isambert, M. Dekkers, and A. Gloter (2005), Mineralogy of greigite Fe3S4, Phys. Scr., T115, 489–491, doi:10.1238/Physica.Topical. 115a00489. Liu, J., R. X. Zhu, A. P. Roberts, S. Q. Li, and J. H. Chang (2004), High‐resolution analysis of early diagenetic effects on magnetic minerals in post‐middle‐Holocene continental shelf sediments from the Korea Strait, J. Geophys. Res., 109, B03103, doi:10.1029/2003JB002813. Liu, Q., Y. J. Yu, J. Torrent, A. P. Roberts, Y. Pan, and R. Zhu (2006), The characteristic low‐temperature magnetic properties of aluminous goethite [a‐(Fe, Al)OOH] explained, J. Geophys. Res., 111, B12S34, doi:10.1029/2006JB004560. Lowrie, W. (1990), Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties,Geophys. Res. Lett., 17, 159–162, doi:10.1029/GL017i002p00159. Lowrie, W., and M. Fuller (1971), On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite, J. Geophys. Res., 76, 6339–6349, doi:10.1029/JB076i026p06339. Mann, S., N. H. C. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch (1990), Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium, Nature, 343, 258–261, doi:10.1038/343258a0. Mattei, M., C. Kissel, and R. Funiciello (1996), No tectonic rotation of the Tuscan Tyrrhenian margin (Italy) since late Messinian, J. Geophys. Res., 101, 2835–2845, doi:10.1029/95JB02398. Mattei, M., F. Speranza, A. Argentieri, F. Rossetti, L. Sagnotti, and R. Funiciello (1999), Extensional tectonics in the Amantea basin (Calabria, Italy): A comparison between structural and magnetic anisotropy data, Tectonophysics, 307, 33–49, doi:10.1016/ S0040-1951(99)00117-1. McKay, D. S., E. K. Gibson Jr., K. L. Thomas‐Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare (1996), Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001, Science, 273, 924–930, doi:10.1126/science.273.5277.924. Mohamed, K. J., D. Rey, B. Rubio, M. J. Dekkers, A. P. Roberts, and F. Vilas (2011), Onshore‐offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, northwest Iberian Peninsula, Continent. Shelf Res., doi:10.1016/j. csr.2010.06.006, in press. Morin, F. J. (1950), Magnetic susceptibility of aFe2O3 and aFe2O3 with added titanium, Phys. Rev., 78, 819–820, doi:10.1103/ PhysRev.78.819.2. Moskowitz, B. M. (1995), Biomineralization of magnetic minerals, U.S. Natl. Rep. Int. Union Geod. Geophys. 1991–1994, Rev. Geophys., 33, 123–128, doi:10.1029/95RG00443. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski (1993), Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, doi:10.1016/0012-821X (93)90245-5. Moskowitz, B. M., M. Jackson, and C. Kissel (1998), Lowtemperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, doi:10.1016/S0012-821X(98)00033-8. Moskowitz, B. M., D. A. Bazylinski, R. Egli, R. B. Frankel, and K. J. Edwards (2008), Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA), Geophys. J. Int., 174, 75–92, doi:10.1111/j.1365-246X. 2008.03789.x. Musgrave, R. J., N. L. Bangs, J. C. Larrasoaña, E. Gràcia, J. A. Hollamby, and M. E. Vega (2006), Rise of the base of the gas hydrate zone since the last glacial recorded by rock magnetism, Geology, 34, 117–120, doi:10.1130/G22008.1. Muxworthy, A. R., and A. P. Roberts (2007), First‐order reversal curve (FORC) diagrams, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero‐ Bervera, pp. 266–272, Springer, Dordrecht, Netherlands. Muxworthy, A. R., and W. Williams (2006), Critical single‐domain/ multi‐domain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes, J. Geophys. Res., 111, B12S12, doi:10.1029/2006JB004588. Muxworthy, A. R., and W. Williams (2009), Critical superparamagnetic/ single domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals, J. R. Soc. Interface, 6, 1207–1212. Muxworthy, A. R., D. Heslop, and W. Williams (2004), Influence of magnetostatic interactions on first‐order‐reversal‐curve (FORC) diagrams: A micromagnetic approach, Geophys. J. Int., 158, 888–897, doi:10.1111/j.1365-246X.2004.02358.x. Neretin, L. N., M. E. Böttcher, B. B. Jørgensen, I. I. Volkov, H. Lüschen, and K. Kilgenfeldt (2004), Pyritization processes and greigite formation in the advancing sulphidization front in the Upper Pleistocene sediments of the Black Sea, Geochim. Cosmochim. Acta, 68, 2081–2093, doi:10.1016/S0016-7037(03) 00450-2. Newell, A. J. (2005), A high‐precision model of first‐order reversal curve (FORC) functions for single‐domain ferromagnets with uniaxial anisotropy, Geochem. Geophys. Geosyst., 6, Q05010, doi:10.1029/2004GC000877. Oda, H., and M. Torii (2004), Sea‐level change and remagnetization of continental shelf sediments off New Jersey (ODP Leg 174A): Magnetite and greigite diagenesis, Geophys. J. Int., 156, 443–458, doi:10.1111/j.1365-246X.2004.02162.x. Oldfield, F., I. Darnley, G. Yates, D. E. France, and J. Hilton (1992), Storage diagenesis versus sulphide authigenesis: Possible implications in environmental magnetism, J. Paleolimnol., 7, 179–189, doi:10.1007/BF00181713. Oles, D., and G. Houben (1998), Greigite (Fe3S4) in an acid mudpool at Makiling volcano, the Philippines, J. Asian Earth Sci., 16, 513–517, doi:10.1016/S0743-9547(98)00029-4. Opdyke, N. D., and J. E. T. Channell (1996), Magnetic Stratigraphy, 346 pp., Academic, San Diego, Calif. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz (1993), The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, doi:10.1029/93GL01483. Ozima, M., M. Ozima, and S. Akimoto (1964), Low temperature characteristics of remanent magnetization of magnetite–selfreversal and recovery phenomena of remanent magnetization, J. Geomagn. Geoelectr., 16, 165–177. Pearce, C. I., R. A. D. Pattrick, and D. J. Vaughan (2006), Electrical and magnetic properties of sulfides, Rev. Mineral. Geochem., 61, 127–180, doi:10.2138/rmg.2006.61.3. Peters, C., and M. J. Dekkers (2003), Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size, Phys. Chem. Earth, 28, 659–667. Peters, C., and R. Thompson (1998), Magnetic identification of selected natural iron oxides and sulphides, J. Magn. Magn. Mater., 183, 365–374, doi:10.1016/S0304-8853(97)01097-4. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, doi:10.1063/ 1.370176. Pike, C. R., A. P. Roberts, and K. L. Verosub (2001), First‐order reversal curve diagrams and thermal relaxation effects in magnetic particles, Geophys. J. Int., 145, 721–730, doi:10.1046/ j.0956-540x.2001.01419.x. Pillans, B. J., A. P. Roberts, G. S. Wilson, S. T. Abbott, and B. V. Alloway (1994), Magnetostratigraphic, lithostratigraphic and tephrostratigraphic constraints on Middle/Lower Pleistocene sea level changes, Wanganui Basin, New Zealand, Earth Planet. Sci. Lett., 121, 81–98, doi:10.1016/0012-821X(94) 90033-7. Porreca, M., and M. Mattei (2010), Tectonic and environmental evolution of Quaternary intramontane basins in southern Apennines (Italy): Insights from palaeomagnetic and rock magnetic investigations, Geophys. J. Int., 182, 682–698, doi:10.1111/ j.1365-246X.2010.04661.x. Porreca, M., M. Mattei, and G. Di Vincenzo (2009), Postdeformational growth of late diagenetic greigite in lacustrine sediments from southern Italy, Geophys. Res. Lett., 36, L09307, doi:10.1029/2009GL037350. Pósfai, M., P. R. Buseck, D. A. Bazylinski, and R. B. Frankel (1998), Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers, Science, 280, 880–883, doi:10.1126/science.280.5365.880. Pósfai, M., K. Cziner, E. Márton, P. Márton, P. R. Buseck, R. B. Frankel, and D. A. Bazylinski (2001), Crystal‐size distributions and possible biogenic origin of Fe sulfides, Eur. J. Mineral., 13, 691–703, doi:10.1127/0935-1221/2001/0013-0691. Pye, K. (1981), Marshrock formed by iron sulphide and siderite cementation in saltmarsh sediments, Nature, 294, 650–652, doi:10.1038/294650a0. Qian, X. F., X. M. Zhang, C. Wang, Y. Xie, W. Z. Wang, and Y. T. Qian (1999), The preparation and phase transition of nanocrystalline iron sulfides via toluene‐thermal process, Mater. Sci. Eng., 64, 170–173, doi:10.1016/S0921-5107(99)00145-2. Radusinovic, D. R. (1966), Greigite from the Lojane chromium deposit, Macedonia, Am. Mineral., 51, 209–215. Rey, D., K. J. Mohamed, A. Bernabeu, B. Rubio, and F. Vilas (2005), Early diagenesis of magnetic minerals in marine transitional environments: Geochemical signatures of hydrodynamic forcing, Mar. Geol., 215, 215–236, doi:10.1016/j.margeo. 2004.12.001. Reynolds, R. L., M. L. Tuttle, C. A. Rice, N. S. Fishman, J. A. Karachewski, and D. M. Sherman (1994), Magnetization and geochemistry of greigite‐bearing Cretaceous strata, North Slope basin, Alaska, Am. J. Sci., 294, 485–528, doi:10.2475/ ajs.294.4.485. Reynolds, R. L., J. G. Rosenbaum, P. van Metre, M. Tuttle, E. Callender, and A. Goldin (1999), Greigite as an indicator of drought—The 1912–1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA, J. Paleolimnol., 21, 193–206, doi:10.1023/A:1008027815203. Rickard, D., and G. W. Luther III (2007), Chemistry of iron sulfides, Chem. Rev., 107, 514–562, doi:10.1021/cr0503658. Roberts, A. P. (1992), Paleomagnetic constraints on the tectonic rotation of the southern Hikurangi margin, N. Z. J. Geol. Geophys., 35, 311–323, doi:10.1080/00288306.1992.9514524. Roberts, A. P. (1995), Magnetic characteristics of sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 134, 227–236, doi:10.1016/0012-821X(95)00131-U. Roberts, A. P., and B. J. Pillans (1993), Rock magnetism of Lower/ Middle Pleistocene marine sediments, Wanganui Basin, New Zealand, Geophys. Res. Lett., 20, 839–842, doi:10.1029/ 93GL00802. Roberts, A. P., and G. M. Turner (1993), Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand, Earth Planet. Sci. Lett., 115, 257–273, doi:10.1016/0012-821X(93)90226-Y. Roberts, A. P., and R. Weaver (2005), Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 231, 263–277, doi:10.1016/j.epsl.2004.11.024. Roberts, A. P., G. M. Turner, and P. P. Vella (1994), Magnetostratigraphic chronology of Late Miocene to Early Pliocene biostratigraphic and oceanographic events in New Zealand, Geol. Soc. Am. Bull., 106, 665–683, doi:10.1130/0016-7606(1994) 106<0665:MCOLMT>2.3.CO;2. Roberts, A. P., R. L. Reynolds, K. L. Verosub, and D. P. Adam (1996), Environmental magnetic implications of greigite (Fe3S4) formation in a 3 million year lake sediment record from Butte Valley, Northern California, Geophys. Res. Lett., 23, 2859–2862, doi:10.1029/96GL02831. Roberts, A. P., G. S. Wilson, F. Florindo, L. Sagnotti, K. L. Verosub, and D. M. Harwood (1998), Magnetostratigraphy of lower Miocene strata from the CRP‐1 core, McMurdo Sound, Ross Sea, Antarctica, Terra Antart., 5, 703–713. Roberts, A. P., J. S. Stoner, and C. Richter (1999), Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea, Mar. Geol., 153, 103–116, doi:10.1016/S0025-3227(98) 00087-5. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First‐order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475, doi:10.1029/2000JB900326. Roberts, A. P., W. T. Jiang, F. Florindo, C. S. Horng, and C. Laj (2005), Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy, Geophys. Res. Lett., 32, L05307, doi:10.1029/2004GL022137. Roberts, A. P., Q. Liu, C. J. Rowan, L. Chang, C. Carvallo, J. Torrent, and C. S. Horng (2006), Characterization of hematite (a‐Fe2O3), goethite (a‐FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first‐order reversal curve diagrams, J. Geophys. Res., 111, B12S35, doi:10.1029/2006JB004715. Roberts, A. P., F. Florindo, J. C. Larrasoaña, M. A. O’Regan, and X. Zhao (2010), Complex polarity pattern at the (former) Plio‐ Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides, Earth Planet. Sci. Lett., 292, 98–111, doi:10.1016/j.epsl.2010.01.025. Rochette, P. (1987), Magnetic susceptibility of the rock matrix related to magnetic fabric studies, J. Struct. Geol., 9, 1015– 1020, doi:10.1016/0191-8141(87)90009-5. Rochette, P. (1988), Inverse magnetic fabric in carbonate‐bearing rocks, Earth Planet. Sci. Lett., 90, 229–237, doi:10.1016/0012- 821X(88)90103-3. Rochette, P., G. Fillion, J.‐L. Mattéi, and M. J. Dekkers (1990), Magnetic transition at 30–34 Kelvin in pyrrhotite: Insight into a widespread occurrence of this mineral in rocks, Earth Planet. Sci. Lett., 98, 319–328, doi:10.1016/0012-821X(90)90034-U. Ron, H., N. R. Nowaczyk, U. Frank, M. J. Schwab, R. Naumann, B. Striewski, and A. Agnon (2007), Greigite detected as dominating remanence carrier in late Pleistocene sediments, Lisan Formation, from Lake Kinneret (Sea of Galilee), Israel, Geophys. J. Int., 170, 117–131, doi:10.1111/j.1365-246X.2007.03425.x. Rowan, C. J., and A. P. Roberts (2005), Tectonic and geochronological implications of variably timed remagnetizations carried by authigenic greigite in fine‐grained sediments from New Zealand, Geology, 33, 553–556, doi:10.1130/G21382.1. Rowan, C. J., and A. P. Roberts (2006), Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett., 241, 119–137, doi:10.1016/j.epsl.2005.10.017. Rowan, C. J., and A. P. Roberts (2008), Widespread remagnetizations and a new view of Neogene tectonic rotations within the Australia‐Pacific plate boundary zone, New Zealand, J. Geophys. Res., 113, B03103, doi:10.1029/2006JB004594. Rowan, C. J., A. P. Roberts, and T. Broadbent (2009), Paleomagnetic smoothing and magnetic enhancement in marine sediments due to prolonged early diagenetic growth of greigite, Earth Planet. Sci. Lett., 277, 223–235, doi:10.1016/j.epsl.2008.10.016. Russell, M. J., and A. J. Hall (1997), The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front, J. Geol. Soc., 154, 377–402, doi:10.1144/ gsjgs.154.3.0377. Russell, M. J., R. M. Daniel, A. J. Hall, and J. A. Sherringham (1994), A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life, J. Mol. Evol., 39, 231–243, doi:10.1007/BF00160147. Sagnotti, L., and A. Winkler (1999), Rock magnetism and palaeomagnetism of greigite‐bearing mudstones in the Italian peninsula, Earth Planet. Sci. Lett., 165, 67–80, doi:10.1016/S0012-821X (98)00248-9. Sagnotti, L., F. Speranza, A. Winkler, M. Mattei, and R. Funiciello (1998), Magnetic fabric of clay sediments from the external northern Apennines (Italy), Phys. Earth Planet. Inter., 105, 73–93, doi:10.1016/S0031-9201(97)00071-X. Sagnotti, L., A. Winkler, P. Montone, L. Di Bella, F. Florindo, M. T. Mariucci, F. Marra, L. Alfonsi, and A. Frepoli (1999), Magnetic anisotropy of Plio‐Pleistocene sediments from the Adriatic margin of the northern Apennines (Italy): Implications for the time‐space evolution of the stress‐field, Tectonophysics, 311, 139–153, doi:10.1016/S0040-1951(99)00159-6. Sagnotti, L., A. Winkler, L. Alfonsi, F. Florindo, and F. Marra (2000), Paleomagnetic constraints on the Plio‐Pleistocene geodynamic evolution of the external central‐northern Apennines (Italy), Earth Planet. Sci. Lett., 180, 243–257, doi:10.1016/ S0012-821X(00)00172-2. Sagnotti, L., P. Rochette, M. Jackson, F. Vadeboin, J. Dinarès‐ Turell, A. Winkler, and “Mag‐Net” Science Team (2003), Inter‐laboratory calibration of low‐field magnetic and anhysteretic susceptibility measurements, Phys. Earth Planet. Inter., 138, 25–38, doi:10.1016/S0031-9201(03)00063-3. Sagnotti, L., A. P. Roberts, R. Weaver, K. L. Verosub, F. Florindo, C. R. Pike, T. Clayton, and G. S. Wilson (2005), Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite, Geophys. J. Int., 160, 89–100, doi:10.1111/j.1365-246X.2005.02485.x. Sagnotti, L., A. Cascella, N. Ciaranfi, P. Macrì, P. Maiorano, M. Marino, and J. Taddeucci (2010), Rock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): Evidence for late diagenetic growth of greigite and implications for magnetostratigraphy, Geophys. J. Int., 180, 1049–1066, doi:10.1111/ j.1365-246X.2009.04480.x. Schoonen, M. A. A., and H. L. Barnes (1991), Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C, Geochim. Cosmochim. Acta, 55, 1505–1514, doi:10.1016/0016-7037(91)90123-M. Schwarz, E. J., and D. J. Vaughan (1972), Magnetic phase relations of pyrrhotite, J. Geomagn. Geoelectr., 24, 441–458. Sherman, D. M. (1990), Mössbauer spectra, crystal chemistry, and electronic structure of greigite, Fe3S4, Eos Trans. AGU, 71, 1649. Skinner, B. J., R. C. Erd, and F. S. Grimaldi (1964), Greigite, the thio‐spinel of iron: A new mineral, Am. Mineral., 49, 543–555. Smirnov, A. V. (2006), Low‐temperature magnetic properties of magnetite using first‐order reversal curve analysis: Implications for the pseudo‐single domain state, Geochem. Geophys. Geosyst., 7, Q11011, doi:10.1029/2006GC001397. Snowball, I. F. (1991), Magnetic hysteresis properties of greigite (Fe3S4) and a new occurrence in Holocene sediments from Swedish Lappland, Phys. Earth Planet. Inter., 68, 32–40, doi:10.1016/ 0031-9201(91)90004-2. Snowball, I. F. (1997a), Gyroremanent magnetization and the magnetic properties of greigite‐bearing clays in southern Sweden, Geophys. J. Int., 129, 624–636, doi:10.1111/j.1365-246X.1997. tb04498.x. Snowball, I. F. (1997b), The detection of single‐domain greigite (Fe3S4) using rotational remanent magnetization (RRM) and the effective gyro field (Bg): Mineral magnetic and palaeomagnetic applications, Geophys. J. Int., 130, 704–716, doi:10.1111/ j.1365-246X.1997.tb01865.x. Snowball, I. F., and R. Thompson (1988), The occurrence of greigite in sediments from Loch Lomond, J. Quat. Sci., 3, 121–125, doi:10.1002/jqs.3390030203. Snowball, I. F., and R. Thompson (1990a), A stable chemical remanence in Holocene sediments, J. Geophys. Res., 95, 4471–4479, doi:10.1029/JB095iB04p04471. Snowball, I. F., and R. Thompson (1990b), A mineral magnetic study of Holocene sedimentation in Lough Catherine, Northern Ireland, Boreas, 19, 127–146, doi:10.1111/j.1502-3885.1990. tb00574.x. Snowball, I. F., and M. Torii (1999), Incidence and significance of magnetic iron sulphides in Quaternary sediments and soils, in Quaternary Climates, Environments and Magnetism, edited by B. A. Maher and R. Thompson, pp. 199–230, Cambridge Univ. Press, Cambridge, U. K., doi:10.1017/CBO9780511535635.007. Spender, M. R., J. M. D. Coey, and A. H. Morrish (1972), The magnetic properties and Mössbauer spectra of synthetic samples of Fe3S4, Can. J. Phys., 50, 2313–2326. Stanjek, H., and E. Murad (1994), Comparison of pedogenic and sedimentary greigite by X‐ray diffraction and Mössbauer spectroscopy, Clays Clay Mineral., 42, 451–454. Stanjek, H., J. W. E. Fassbinder, H. Vali, H. Wägele, and W. Graf (1994), Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil, Eur. J. Soil Sci., 45, 97–103, doi:10.1111/j.1365-2389. 1994.tb00490.x. Stephenson, A. (1980), Gyromagnetism and the remanence acquired by a rotating rock in an alternating‐field, Nature, 284, 48–49, doi:10.1038/284048a0. Stephenson, A., and I. F. Snowball (2001), A large gyromagnetic effect in greigite, Geophys. J. Int., 145, 570–575, doi:10.1046/ j.0956-540x.2001.01434.x. Suzuki, Y., et al. (2006), Sclerite formation in the hydrothermalvent “scaly‐foot” gastropod—Possible control of iron sulfide biomineralization by the animal, Earth Planet. Sci. Lett., 242, 39–50, doi:10.1016/j.epsl.2005.11.029. Sweeney, R. E., and I. R. Kaplan (1973), Pyrite framboid formation: Laboratory synthesis and marine sediments, Econ. Geol., 68, 618–634, doi:10.2113/gsecongeo.68.5.618. Tang, Y., Q. W. Chen, Y. Xiong, and Y. Li (2007), Magnetic field‐induced increase in conversion rate of Fe3S4 to FeS2, Chin. J. Inorg. Chem., 23, 941–947. Tarduno, J. A. (1995), Superparamagnetism and reduction diagenesis in pelagic sediments: Enhancement or depletion?, Geophys. Res. Lett., 22, 1337–1340, doi:10.1029/95GL00888. Tauxe, L. (1998), Paleomagnetic Principles and Practice, 309 pp., Kluwer Acad., Dordrecht, Netherlands. Tauxe, L., T. A. T. Mullender, and T. Pick (1996), Potbellies, wasp‐waists, and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 101, 571–583, doi:10.1029/95JB03041. Thompson, R., and T. D. J. Cameron (1995), Palaeomagnetic study of Cenozoic sediments in North Sea boreholes: An example of a magnetostratigraphic conundrum in a hydrocarbon‐producing area, in Palaeomagnetic Applications in Hydrocarbon Exploration, edited by P. Turner and A. Turner, Geol. Soc. Spec. Publ., 98, 223–236. Torii, M., K. Fukuma, C. S. Horng, and T. Q. Lee (1996), Magnetic discrimination of pyrrhotite‐ and greigite‐bearing sediment samples, Geophys. Res. Lett., 23, 1813–1816, doi:10.1029/ 96GL01626. Tric, E., C. Laj, C. Jehanno, J.‐P. Valet, C. Kissel, A. Mazaud, and S. Iaccarino (1991), High‐resolution record of the Upper Olduvai transition from Po Valley (Italy) sediments: Support for dipolar transition geometry?, Phys. Earth Planet. Inter., 65, 319–336, doi:10.1016/0031-9201(91)90138-8. Turner, G. M. (2001), Toward an understanding of the multicomponent magnetization of uplifted marine sediments in New Zealand, J. Geophys. Res., 106, 6385–6397, doi:10.1029/2000JB900406. Turner, G. M., and P. J. J. Kamp (1990), Paleomagnetic location of the Jaramillo Subchron and the Matuyama‐Brunhes transition in the Castlecliffian stratotype section, Wanganui Basin, New Zealand, Earth Planet. Sci. Lett., 100, 42–50, doi:10.1016/ 0012-821X(90)90174-V. Turner, G. M., A. P. Roberts, C. Laj, C. Kissel, A. Mazaud, S. Guitton, and D. A. Christoffel (1989), New paleomagnetic results from Blind River: Revised magnetostratigraphy and tectonic rotation of the Marlborough region, South Island, New Zealand, N. Z. J. Geol. Geophys., 32, 191–196. Uda, M. (1965), On the synthesis of greigite, Am. Mineral., 50, 1487–1489. Vandenberghe, R. E., E. De Grave, P. M. A. De Bakker, M. Krs, and J. J. Hus (1991), Mössbauer effect study of natural greigite, Hyperfine Interact., 68, 319–322, doi:10.1007/BF02396500. van Dongen, B. E., A. P. Roberts, S. Schouten, W. T. Jiang, F. Florindo, and R. D. Pancost (2007), Formation of iron sulfide nodules during anaerobic oxidation of methane, Geochim. Cosmochim. Acta, 71, 5155–5167, doi:10.1016/j.gca.2007.08.019. van Velzen, A. J., M. J. Dekkers, and J. D. A. Zijderveld (1993), Magnetic iron‐nickel sulphides in the Pliocene and Pleistocene marine marls from the Vrica section (Calabria, Italy), Earth Planet. Sci. Lett., 115, 43–55, doi:10.1016/0012-821X(93) 90211-Q. Vasiliev, I.,M. J. Dekkers, W. Krijgsman, C. Franke, C. G. Langereis, and T. A. T. Mullender (2007), Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene‐Pliocene sedimentary rocks of the Carpathian foredeep (Romania), Geophys. J. Int., 171, 613–629, doi:10.1111/j.1365-246X. 2007.03560.x. Vasiliev, I., C. Franke, J. D.Meeldijk, M. J. Dekkers, C. G. Langereis, and W. Krijgsman (2008), Putative greigite magnetofossils from the Pliocene Epoch, Nat. Geosci., 1, 782–786, doi:10.1038/ ngeo335. Vaughan, D. J., and J. R. Craig (1985), The crystal chemistry of iron‐nickel thiospinels, Am. Mineral., 70, 1036–1043. Verwey, E. J. W. (1939), Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144, 327.328, doi:10.1038/144327b0. Walker, R., A. D. Steele, and D. T. B. Morgan (1996), Pyrophoric nature of iron sulfides, Ind. Eng. Chem. Res., 35, 1747.1752, doi:10.1021/ie950397t. Walker, R., A. D. Steele, and D. T. B. Morgan (1997), Deactivation of pyrophoric iron sulfides, Ind. Eng. Chem. Res., 36, 3662.3667, doi:10.1021/ie960575y. Waren, A., S. Bengtson, S. K. Goffredi, and C. L. Van Dover (2003), A hot ]vent gastropod with iron sulfide dermal schlerites, Science, 302, 1007, doi:10.1126/science.1087696. Watson, J. H. P., D. C. Ellwood, Q. X. Deng, S. Mikhalovsky, C. E. Hayter, and J. Evans (1995), Heavy ]metal adsorption on bacterially produced FeS, Miner. Eng., 8, 1097.1108, doi:10.1016/0892-6875(95)00075-2. Watson, J. H. P., B. A. Cressey, A. P. Roberts, D. C. Ellwood, J. M. Charnock, and A. K. Soper (2000), Structural and magnetic studies on heavy ]metal ]adsorbing iron sulphide nanoparticles produced by sulphate ]reducing bacteria, J. Magn. Magn. Mater., 214, 13.30, doi:10.1016/S0304-8853(00)00025-1. Watson, J. H. P., I. W. Croudace, P. E. Warwick, P. A. B. James, J. M. Charnock, and D. C. Ellwood (2001), Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate ]reducing bacteria, Sep. Sci. Technol., 36, 2571.2607, doi:10.1081/SS-100107214. Weiss, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili (2004), Ferromagnetic resonance and low ]temperature magnetic test for biogenic magnetite, Earth Planet. Sci. Lett., 224, 73.89, doi:10.1016/j.epsl.2004.04.024. Wilkin, R. T., and H. L. Barnes (1996), Pyrite by reactions of iron monosulfides with dissolved inorganic and organic sulfur species, Geochim. Cosmochim. Acta, 60, 4167.4179, doi:10.1016/ S0016-7037(97)81466-4. Williams, S. A. (1968), More data on greigite, Am. Mineral., 53, 2087.2088. Wolf, S. A., D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger (2001), Spintronics: A spin ]based electronics vision for the future, Science, 294, 1488.1495, doi:10.1126/science. 1065389. Yamaguchi, S., and H. Wada (1970), Magnetic anisotropy of Fe3S4 as revealed by electron diffraction, J. Appl. Phys., 41, 1873.1874, doi:10.1063/1.1659128. Zapponi, M., T. Perez, C. Ramos, and C. Saragovi (2005), Prohesion and outdoors tests on corrosion products developed over painted galvanized steel sheets with and without Cr(VI) species, Corros. Sci., 47, 923.936, doi:10.1016/j.corsci.2004.06.007.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorRoberts, A. P.en
dc.contributor.authorChang, L.en
dc.contributor.authorRowan, C. J.en
dc.contributor.authorHorng, C.‐S.en
dc.contributor.authorFlorindo, F.en
dc.contributor.departmentNational Oceanography Centre, Southampton, University of Southampton, Southampton, UK and Now at Research School of Earth Sciences, Australian National University, Canberra, ACT, Australiaen
dc.contributor.departmentNational Oceanography Centre, Southampton, University of Southampton, Southampton, UKen
dc.contributor.departmentNational Oceanography Centre, Southampton, University of Southampton, Southampton, UK and Now at School of GeoSciences, University of Edinburgh, Edinburgh, UKen
dc.contributor.departmentInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Review_paper_greigite.pdf3.36 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

233
checked on Feb 10, 2021

Page view(s) 50

317
checked on Apr 17, 2024

Download(s)

41
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric