Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7012

Authors: Roberts, A. P.*
Chang, L.*
Rowan, C. J.*
Horng, C.‐S.*
Florindo, F.*
Title: Magnetic properties of sedimentary greigite (Fe3S4): an update
Title of journal: Reviews of Geophysics
Series/Report no.: /49 (2011)
Publisher: American Geophysical Union
Issue Date: 29-Jan-2011
DOI: 10.1029/2010RG000336
Keywords: greigite
Abstract: Greigite (Fe3S4) is an authigenic ferrimagnetic mineral that grows as a precursor to pyrite during early diagenetic sedimentary sulfate reduction. It can also grow at any time when dissolved iron and sulfide are available during diagenesis. Greigite is important in paleomagnetic, environmental, biological, biogeochemical, tectonic, and industrial processes. Much recent progress has been made in understanding its magnetic properties. Greigite is an inverse spinel and a collinear ferrimagnet with antiferromagnetic coupling between iron in octahedral and tetrahedral sites. The crystallographic c axis is the easy axis of magnetization, with magnetic properties dominated by magnetocrystalline anisotropy. Robust empirical estimates of the saturation magnetization, anisotropy constant, and exchange constant for greigite have been obtained recently for the first time, and the first robust estimate of the low‐field magnetic susceptibility is reported here. The Curie temperature of greigite remains unknown but must exceed 350°C. Greigite lacks a low‐temperature magnetic transition. On the basis of preliminary micromagnetic modeling, the size range for stable single domain behavior is 17–200 nm for cubic crystals and 17–500 nm for octahedral crystals. Gradual variation in magnetic properties is observed through the pseudo‐single‐domain size range. We systematically document the known magnetic properties of greigite (at high, ambient, and low temperatures and with alternating and direct fields) and illustrate how grain size variations affect magnetic properties. Recognition of this range of magnetic properties will aid identification and constrain interpretation of magnetic signals carried by greigite, which is increasingly proving to be environmentally important and responsible for complex paleomagnetic records, including widespread remagnetizations.
Appears in Collections:04.05.09. Environmental magnetism
04.04.08. Sediments: dating, processes, transport
04.05.07. Rock magnetism
04.05.06. Paleomagnetism
04.04.05. Mineralogy and petrology
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Review_paper_greigite.pdf3.36 MBAdobe PDFonly authorized users View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA