Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7002
Authors: Battaglia, M.* 
Di Bari, M.* 
Acocella, V.* 
Neri, M.* 
Title: Dike emplacement and flank instability at Mount Etna: Constraints from a poro-elastic-model of flank collapse
Journal: Journal of Volcanology and Geothermal Research 
Series/Report no.: /199 (2011)
Publisher: Elsevier B.V.
Issue Date: 1-Jan-2011
DOI: 10.1016/j.jvolgeores.2010.11.005
Keywords: Etna
dike intrusion
flank instability
poro-elasticity
analytical modelling
Subject Classification04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous 
04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes 
04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous 
04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones 
04. Solid Earth::04.04. Geology::04.04.09. Structural geology 
04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous 
04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics 
04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress 
04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics 
04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous 
04. Solid Earth::04.08. Volcanology::04.08.03. Magmas 
04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring 
04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk 
05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous 
Abstract: Many volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α > 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
2011 Battaglia et al JVGR 2011.pdfarticle1.24 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations

15
checked on Feb 10, 2021

Page view(s) 50

234
checked on Apr 17, 2024

Download(s)

25
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric