Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6989
DC FieldValueLanguage
dc.contributor.authorallTrasatti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBonafede, M.; Università di Bolognaen
dc.contributor.authorallFerrari, C.; Università di Bolognaen
dc.contributor.authorallGiunchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2011-05-05T10:41:52Zen
dc.date.available2011-05-05T10:41:52Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/6989en
dc.description.abstractDeformation sources in volcanic areas are generally modeled in terms of pressurized tri-axial ellipsoids or pressurized cracks with simple geometrical shapes, embedded in a homogeneous half-space. However, the assumption of a particular source mechanism and the neglect of medium heterogeneities bias significantly the estimate of source parameters. A more general approach describes the deformation source in terms of a suitable moment tensor. Ratios between moment tensor eigenvalues are shown to provide a strong diagnostic tool for the physical interpretation of the deformation source and medium heterogeneities may be accounted for through 3D finite element computations. Leveling and EDM data, collected during the 1982–84 unrest episode at Campi Flegrei (Italy), are employed to retrieve the complete moment tensor according to a Bayesian inversion procedure, considering the heterogeneous elastic structure of the volcanic area. Best fitting moment tensors are found to be incompatible with any pressurized ellipsoid or crack. Taking into account the deflation of a deeper magma reservoir, which accompanies the inflation of a shallower source, data fit improves considerably but the retrieved moment tensor of the shallow source is found to be incompatible with pressurized ellipsoids, still. Looking for alternative physical models of the dislocation source, we find that the best fit moment tensor can be best interpreted in terms of a mixed mode (shear and tensile) dislocation at 5.5 km depth, striking EW and dipping by ~25°–30° to the North. Gravity changes are found to be compatible with the intrusion of ~60–70·10^6 m^3 of volatile rich magma with density ~2400 kg/m^3.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries3-4/306(2011)en
dc.relation.isversionofhttp://hdl.handle.net/2122/6928en
dc.subjectvolcanic sourceen
dc.subjectunresten
dc.subjectfinite elementen
dc.subjectinverse theoryen
dc.titleOn deformation sources in volcanic areas: Modeling the Campi Flegrei (Italy) 1982–84 unresten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber175-185en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.epsl.2011.03.033en
dc.relation.referencesAki, K., Richards, P., 1980. Quantitative Seismology: Theory and Methods. W. H. Freeman and Co., San Francisco. Amoruso, A., Crescentini, L., Berrino, G., 2008. Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 272, 181–188. Aster, R., Meyer, R., 1988. Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics 149, 195–218. Backus, G., Mulcahy, M., 1976. Moment tensors and other phenomenological descriptions of seismic sources: I. Continous displacements. Geophys. J. R. Astron. Soc. 46, 341–361. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., De Natale, G., 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys. Res. Lett. 33, L01307. doi:10.1029/2005GL024904. Belardinelli, M., Bizzarri, A., Berrino, G., Ricciardi, G., 2011. A model for seismicity rates observed during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 302, 287–298. doi:10.1016/j.epsl.2010.12.015. Berrino, G., 1994. Gravity changes induced by height–mass variations at the Campi Flegrei caldera. J. Volcanol. Geotherm. Res. 61, 293–309. Berrino, G., Corrado, G., Luongo, G., Toro, B., 1984. Ground deformation and gravity change accompanying the 1982 Pozzuoli uplift. Bull. Volcanol. 47, 187–200. Berrino, G., Corrado, G., Riccardi, U., 2008. Sea gravity data in the Gulf of Naples. a contribution to delineating the structural pattern of the Phlegraean Volcanic District. J. Volcanol. Geotherm. Res. 175, 241–252. Bonafede, M., Ferrari, C., 2009. Analytical models of deformation and residual gravity changes due to a mogi source in a viscoelastic medium. Tectonophysics 471, 4–13. doi:10.1016/j.tecto.2008.10.006. Cassano, E., La Torre, P., 1987. Geophysics. In: Rosi, M., Sbrana, A. (Eds.), Phlegraean Fields: CNR Quad. Ric. Sci. Soc., vol. 114(9), pp. 103–131. Chiarabba, C., Moretti, M., 2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 18, 373–379. doi:10.1111/j.1365-3121.2006.00701.x. Crescentini, L., Amoruso, A., 2007. Effects of crustal layering on the inversion of deformation and gravity data in volcanic areas: an application to the Campi Flegrei caldera, Italy. Geophys. Res. Lett. 34. doi:10.1029/2007GL029919. Dahm, T., 2000. Numerical simulations of the propagation path and the arrest of fluidfilled fractures in the earth. Geophys. J. Int. 141, 623–638. Dahm, T., Brandsdóttir, B., 1997. Moment tensors of micro-earthquakes from the Eyjafjallajökull volcano in South Iceland. Geophys. J. Int. 130, 183–192. Davis, P., 1986. Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea volcano, Hawaii. J. Geophys. Res. 91, 7429–7438. De Natale, G., Pingue, F., Allard, P., Zollo, A., 1991. Geophysical and geochemical modelling of the 1982–1984 unrest phenomena at Campi Flegrei caldera (southern Italy). J. Volcanol. Geotherm. Res. 48, 199–222. De Natale, G., Petrazzuoli, S., Pingue, F., 1997. The effect of collapse structures on ground deformation in calderas. Geophys. Res. Lett. 24, 1555–1558. Dieterich, J., Decker, R., 1975. Finite element modeling of surface deformation associated with volcanism. J. Geophys. Res. 4094–4101. Dvorak, J., Berrino, G., 1991. Recent ground movement and seismic activity in Campi Flegrei, southern Italy: episodic growth of a resurgent dome. J. Geophys. Res. 96, 2309–2324. Fernandez, J., Tiampo, K., Rundle, J., 2001. Viscoelastic displacement and gravity changes due to point magmatic intrusions in a gravitational layered solid earth. Geophys. J. Int. 146, 155–170. Maccaferri, F., Bonafede, M., Rivalta, E., 2010. A numerical model of dike propagation in layered elasticmedia. Geophys. J. Int. 180, 1107–1123. doi:10.1111/j.1365-246X.2009. 04495.x. Mogi, K., 1958. Relation between the eruptions of various volcanoes and deformations of the ground surfaces around them. Bull. Earthquake Res. Inst. Univ. Tokyo 36, 99–134. Okubo, S., Watanabe, H., 1989. Gravity change caused by a fissure eruption. Geophys. Res. Lett. 16, 445–448. Orsi, G., De Vita, S., Di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution an configuration. J. Volcanol. Geotherm. Res. 74, 179–214. Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M., Isaia, R., Petrazzuoli, S., Ricciardi, G., Ricco, C., 1999. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera, Italy: an example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91, 415–451. Rinaldi, A., Todesco, M., Bonafede, M., 2010. Hydrothermal instability and ground displacement at the Campi Flegrei caldera. Phys. Earth Planet. Inter. 178, 155–161. doi:10.1016/j.pepi.2009.09.005. Rivalta, E., Segall, P., 2008. Magma compressibility and the missing magma source for some dike intrusions. Geophys. Res. Lett. 35. doi:10.1029/2007GL032521. Rosi, M., Sbrana, A., Principe, C., 1983. The Phlegraean Fields; structural evolution, volcanic history and eruptive mechanisms. J. Volcanol. Geotherm. Res. 17, 273–288. Sambridge, M., 1999a. Geophysical inversion with a neighborhood algorithm. Part I. Searching a parameter space. Geophys. J. Int. 138, 479–494. Sambridge, M., 1999b. Geophysical inversion with a neighborhood algorithm. Part II. Appraising the ensemble. Geophys. J. Int. 138, 727–746. Trasatti, E., Bonafede, M., 2008. Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy. Ann. Geophys. 51, 121–135. Trasatti, E., Giunchi, C., Bonafede, M., 2005. Structural and rheological constraints on source depth and overpressure estimates at the Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 144, 105–118. Trasatti, E., Giunchi, C., Piana Agostinetti, N., 2008. Numerical inversion of deformation caused by pressure sources: application to Mount Etna, Italy. Geophys. J. Int. 172, 873–884. doi:10.1111/j.1365-246X.2007.03677.x. Trasatti, E., Cianetti, S., Giunchi, C., Bonafede, M., Piana Agostinetti, N., Casu, F., Manzo, M., 2009. Bayesian source inference of the 1993–1997 deformation at Mount Etna (Italy) by numerical solutions. Geophys. J. Int. 177, 806–814. Troise, C., Pingue, F., De Natale, G., 2003. Coulomb stress changes at calderas: modeling the seismicity of Campi Flegrei (southern Italy). J. Geophys. Res. 108 (B6), 2292. doi:10.1029/2002JB002006. Zollo, A., Maercklin, N., Vassallo, M., Dello Iacono, D., Virieux, J., Gasparini, P., 2008. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35. doi:10.1029/2008GL034242.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTrasatti, E.en
dc.contributor.authorBonafede, M.en
dc.contributor.authorFerrari, C.en
dc.contributor.authorGiunchi, C.en
dc.contributor.authorBerrino, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversità di Bolognaen
dc.contributor.departmentUniversità di Bolognaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversity of Bologna-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-2983-045X-
crisitem.author.orcid0000-0002-4101-6872-
crisitem.author.orcid0000-0002-0174-324X-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011_EPSL_cf.pdfMain article1.62 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

31
checked on Feb 10, 2021

Page view(s) 50

700
checked on Apr 20, 2024

Download(s)

21
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric