Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6979
DC FieldValueLanguage
dc.contributor.authorallBianchini, G.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italyen
dc.contributor.authorallPalchetti, L.; Istituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italyen
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDi Girolamo, P.; Dipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italyen
dc.contributor.authorallDi Iorio, T.; Dipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italyen
dc.date.accessioned2011-04-21T10:49:22Zen
dc.date.available2011-04-21T10:49:22Zen
dc.date.issued2011-01-28en
dc.identifier.urihttp://hdl.handle.net/2122/6979en
dc.description.abstractThe Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth Cooling by Water Vapour Radiation (ECOWAR) measurement campaign, obtaining downwelling radiance spectra in the 100–1100 cm−1 range, under clear-sky conditions and in the presence of cirrus clouds. The analysis of these measurements has proven that the instrument is capable of determining precipitable water vapor with a total uncertainty of 5–7% by using the far-infrared rotational band of water. The measurement is unaffected by the presence of cirri, whose optical depth can be instead retrieved as an additional parameter. Information on the vertical profiles of water vapor volume mixing ratio and temperature can also be retrieved for three altitude levels. The ability to measure the water vapor column with a simple, uncooled instrument, capable of operating continuously and with a time resolution of about 10 min, makes REFIR-PAD a very valuable instrument for meteorological and climatological studies for the characterization of the water vapor distribution.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/116 (2011)en
dc.relation.isversionofhttp://hdl.handle.net/2122/6345en
dc.subjecttropospheric water vaporen
dc.subjectIR spectroscopyen
dc.subjectREFIR-PADen
dc.subjectECOWARen
dc.titleWater vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaignen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberD02310en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structureen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniquesen
dc.identifier.doi10.1029/2010JD014530en
dc.relation.referencesBhawar, R., et al. (2008), Spectrally resolved observations of Earth’s emission spectrum in the H2O rotation band, Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207. Bianchini, G., and L. Palchetti (2008), Technical Note: REFIR‐PAD level 1 data analysis and performance characterization, Atmos. Chem. Phys., 8, 3817–3826. Bianchini, G., L. Palchetti, and B. Carli (2006), A wide‐band nadir‐sounding spectroradiometer for the characterization of the Earth’s outgoing longwave radiation, Proc. SPIE Int. Soc. Opt. Eng., 6361, 63610A. Bianchini, G., L. Palchetti, A. Baglioni, and F. Castagnoli (2007), Farinfrared spectrally resolved broadband emission of the atmosphere from Morello and Gomito mountains near Florence, Proc. SPIE Int. Soc. Opt. Eng., 6745, 674518. Bösenberg, J. (1998), Ground‐based differential absorption lidar for watervapor and temperature profiling, Appl. Opt., 37, 3845–3860. Clough, S. A., M. J. Iacono, and J. L. Moncet (1992), Line‐by‐line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97, 15,761–15,785, doi:10.1029/92JD01419. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady‐Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: a summary of the AER codes: Short communication, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244. Delamere, J. S., S. A. Clough, V. H. Payne, E. J. Mlawer, D. D. Turner, and R. R. Gamache (2010), A far‐infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, doi:10.1029/2009JD012968. de Zafra, R. L., A. Parrish, P. M. Solomon, and J. W. Barrett (1983), A quasi continuous record of atmospheric opacity at l = 1.1 mm over 34 days at Mauna Kea observatory, Int. J. Infrared Millimeter Waves, 4, 757–765. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz (2004), Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342. Di Girolamo, P., D. Summa, and R. Ferretti (2009), Rotational Raman Lidar measurements for the characterization of stratosphere‐troposphere exchange mechanisms, J. Atmos. Oceanic Technol., 26, 1742–1762. Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu (2006), Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts, J. Geophys. Res., 111, D09S15, doi:10.1029/ 2005JD006116. Elliott, W. P., and D. J. Gaffen (1991), On the utility of radiosonde humidity archives for climate studies, Bull. Am. Meteorol. Soc., 72, 1507–1520. England, M. N., R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and T. A. Clark (1992), Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar, J. Geophys. Res., 97, 899–916, doi:10.1029/91JD02384. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Gordon, I. E., L. S. Rothman, R. R. Gamache, D. Jaquemart, C. Boone, P. F. Bernath, M. W. Shephard, J. S. Delamere, and S. A. Clough (2007), Current updates of the water‐vapor line list in HITRAN: A new “Diet” for air‐broadened half‐widths, J. Quant. Spectrosc. Radiat. Transfer, 108, 389–402, doi:10.1016/j.jqsrt.2007.06.009. James, F. (1994), Minuit, function minimization and error analysis, reference manual, D506, CERN, Geneva, Switzerland. Kiehl, J. T., and K. E. Trenberth (1997), Earth’s Annual Global Mean Energy Budget, Bull. Am. Meteorol. Soc., 78, 197–208. Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd Jr., L. W. Abreu, J. E. A. Selby, R. W. Fenn, and R. A. McClatchey (1980), Atmospheric transmittance/radiance: Computer code LOWTRAN 5, AFGLTR‐ 80‐0670, Air Force Geophys. Lab., Hanscom AFB, Mass. Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans (2004), Development and validation of a time‐lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305– 1327. Niro, F., K. Jucks, and J.‐M. Hartmann (2005), Spectral calculations in central and wing regions of CO2 IR bands, IV: Software and database for the computation of atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, 95, 469–481. Palchetti, L., A. Barbis, J. E. Harries, and D. Lastrucci (1999), Design and mathematical modelling of the space‐borne far‐infrared Fourier transform spectrometer for REFIR experiment, Infrared Phys. Technol., 40, 367–377. Palchetti, L., G. Bianchini, F. Castagnoli, B. Carli, C. Serio, F. Esposito, V. Cuomo, R. Rizzi, and T. Maestri (2005), Breadboard of a Fouriertransform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission, Appl. Opt., 44, 2870–2878. Palchetti, L., C. Belotti, G. Bianchini, F. Castagnoli, B. Carli, U. Cortesi, M. Pellegrini, C. Camy‐Peyret, P. Jeseck, and Y. Té (2006), Technical note: First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025–5030. Palchetti, L., G. Bianchini, B. Carli, U. Cortesi, and S. Del Bianco (2007), Measurement of the water vapour vertical profile and of the Earth’s outgoing far infrared flux, Atmos. Chem. Phys. Discuss., 7, 17,741–17,767. Rizzi, R., B. Carli, J. E. Harries, J. Leotin, C. Serio, A. Sutera, B. Bizzarri, R. Bonsignori, and S. Peskett (2001), Mission objectives and instrument requirements for the (REFIR) Radiation Explorer in the Far‐InfraRed mission: An outline after the end of phase B0, in Current Problems in Atmospheric Radiation, edited by W. L. Smith and Y. M. Timofeyev, pp. 567–570, A. Deepak, Hampton, Va. Rothman, L. S., et al. (2005), The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 96, 139–204. Serio, C., F. Esposito, G. Masiello, G. Pavese, M. R. Calvello, G. Grieco, V. Cuomo, H. L. Buijs, and C. B. Roy (2008), Interferometer for groundbased observations of emitted spectral radiance from the troposphere: Evaluation and retrieval performance, Appl. Opt., 47, 3909–3919. Shephard, M. W., S. A. Clough, V. H. Payne, W. L. Smith, S. Kireev, and K. E. Cady‐Pereira (2009), Performance of the line‐by‐line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx, Atmos. Chem. Phys., 9, 7397–7417. Sinha, A., and J. E. Harries (1995), Water vapour and greenhouse trapping: The role of far infrared absorption, Geophys. Res. Lett., 22, 2147–2150, doi:10.1029/95GL01891. Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell (1999), The retrieval of planetary boundary layer structure using ground‐based infrared spectral radiance measurement, J. Atmos. Oceanic Technol., 16, 323–333. Tobin, D. C., et al. (1999), Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26mm, J. Geophys. Res., 104, 2081–2092, doi:10.1029/1998JD200057. Vömel, H., H. Selkirk, L. Miloshevich, J. Valverde‐Canossa, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953–963. Wang, J. Y. (1974), On the estimation of low‐altitude water vapor profiles from ground‐based infrared measurements, J. Atmos. Sci., 31, 513–521.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBianchini, G.en
dc.contributor.authorPalchetti, L.en
dc.contributor.authorMuscari, G.en
dc.contributor.authorFiorucci, I.en
dc.contributor.authorDi Girolamo, P.en
dc.contributor.authorDi Iorio, T.en
dc.contributor.departmentIstituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italyen
dc.contributor.departmentIstituto di Fisica Applicata “Nello Carrara,” Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Ingegneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italyen
dc.contributor.departmentDipartimento di Fisica, Università di Roma “La Sapienza,” Rome, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010JD014530.pdf766.79 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

9
checked on Feb 10, 2021

Page view(s) 10

395
checked on Apr 20, 2024

Download(s)

32
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric