Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6968
DC FieldValueLanguage
dc.contributor.authorallCinti, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallProcesi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTassi, F.; Dipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, 50121 Firenze, Italyen
dc.contributor.authorallMontegrossi, G.; Dipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, 50121 Firenze, Italyen
dc.contributor.authorallSciarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVaselli, O.; Dipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, 50121 Firenze, Italyen
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-03-23T07:12:48Zen
dc.date.available2011-03-23T07:12:48Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/6968en
dc.description.abstractA geochemical survey of 197 fluid discharges (cold and thermal waters and bubbling pools) and 15 gas emissions from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Latium, Central Italy) was carried out in 2007–2008. The chemical and isotopic compositions of the fluid discharges indicate the occurrence of two main sources: 1) relatively shallow aquifers with Ca(Na,K)–HCO3 and Ca(Mg)–HCO3 compositions when trapped in volcanic and sedimentary formations, respectively; and 2) a deep reservoir, which is hosted in the Mesozoic carbonate sequence, rich in CO2 and having a Ca–SO4(HCO3) composition. Dissolution of a CO2-rich gas phase into the shallow aquifers produces high-TDS and high-pCO2 cold waters, while oxidation of deep-derived H2S to SO4 2− generates low-pH (b4) sulfate waters. The δ13C–CO2 values for gas emissions (from−2.8 to+2.7‰vs. VPDB) suggest that the origin of CO2 associated with the deep fluids ismainly related to thermo-metamorphic reactions within the carbonate reservoir, although significant mantle contribution may also occur. However, R/Ra values (0.37–0.62) indicate that He is mainly produced by a crustal source, with a minor component from a crust-contaminated mantle. On the basis of the δ13C–CH4 and δD–CH4 values (from −25.7 to −19.5‰ vs. VPDB and from −152 to −93.4‰ vs. VSMOW, respectively) CH4 production is associated with thermogenic processes, possibly related to abiogenic CO2 reduction within the carbonate reservoir. The δ34S–H2S values (from+9.3 to +10.4‰ vs. VCDT) are consistent with the hypothesis of a sedimentary source of sulfur from thermogenic reduction of Triassic sulfates. Geothermometric evaluations based on chemical equilibria CO2–CH4 and, separately, H2S suggest that the reservoir equilibriumtemperature is up to ~300 °C. The δDand δ18O data indicate thatwater recharging both the shallow and deep aquifers has a meteoric origin. Fluid geochemistry, coupled with gravimetric data and tectonic lineaments, supports the idea that significant contributions from a deep-seated geothermal brine are present in the Stigliano thermal fluid discharges. Exploration surveys investigated this area during 70's–90's for geothermal purposes. Nevertheless, presently the area is still under-exploited. The presence of thermal waters and anomalous heat flow together with the demographic growth of the last years,makes this site a suitable location for direct applications of the geothermal resource.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.subjectGeochemistry Water Gas Stable isotope Geothermometry Central Italyen
dc.titleFluid geochemistry and geothermometry in the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Central Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber160-181en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of watersen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.identifier.doi10.1016/j.chemgeo.2011.02.017en
dc.relation.referencesAbrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M., 1988. Methane–hydrogen gas seeps, Zambales ophiolite, Philippines: deep or shallow origin? Chem. Geol. 7, 211–222. Allard, P., Maiorani, A., Tedesco, D., Cortecci, G., Turi, B., 1991. Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera. J. Volcanol. Geotherm. Res. 48, 139–159. Allard, P., Jean-Baptiste, P., D'Alessandro, W., Parello, F., Parisi, B., Flehoc, C., 1997. Mantle derived helium and carbon in groundwater and gases of Mount Etna, Italy. Earth Planet. Sci. Lett. 148, 501–516. Allegrini, G., Cappetti, G., Sabatelli, F., 1995. Geothermal development in Italy: country update report. Proc. of the World Geothermal Congress, Florence, Italy, pp. 201–208. Anderson, R.B., 1984. The Fischer–Tropsch Synthesis. Academic Press, New York. Arnórsson, S., Bjarnason, J.Ö., Giroud, N., Gunnarsson, I., Stefánsson, A., 2006. Sampling and analysis of geothermal fluids. Geofluids 6, 1–14. Ault, W.U., Kulp, J.L., 1959. Isotopic geochemistry of sulphur. Geochim. Cosmochim. Acta 16, 201–235. Baldi, P., Ferrara, G.C., Masselli, L., Pieretti, G., 1973. Hydrogeochemistry of the region between Monte Amiata and Rome. Geothermics 2, 124–141. Ballentine, C.J., Sherwood Lollar, B., 2002. Regional groundwater focusing of nitrogen and noble gases into the Hugoton–Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497.Barberi, F., Buonasorte, G., Cioni, R., Fiordalisi, A., Foresi, L., Iaccarino, S., Laurenzi, M.A., Sbrana, A., Vernia, L., Villa, I.M., 1994. Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem. Descr. Carta Geol. d'Italia 49, 77–134. Barberi, F., Carapezza, M.L., Ranaldi, M., Tarchini, L., 2007. Gas blowout from shallow boreholes at Fiumicino (Rome): induced hazard and evidence of deep CO2 degassing on the Tyrrhenian margin of central Italy. J. Volcanol. Geotherm. Res. 165, 17–31. Barbieri, M., Masi, U., Tolomeo, L., 1979. Origin and distribution of strontium in the travertines of Latium (central Italy). Chem. Geol. 24, 181–188. Barelli, A., Bertini, G., Buonasorte, G., Cappetti, G., Fiordelisi, A., 2000. Recent deep exploration results at the margins of the Larderello Travale geothermal system. Proc. of the World Geothermal Congress, Kyushu–Tohoku, Japan, pp. 965–970. Bell, A.T., 1986. The mechanism of the Fischer–Tropsch synthesis. Heterogeneous Catalysis. Texas A & M University Press, College Station, TX. Berndt, M.E., Allen, D.E., Seyfried, W.E., 1996. Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24, 351–354. Bertrami, R., Cameli, G.M., Lovari, F., Rossi, U., 1984. Discovery of Latera geothermal field: problems of the exploration and research. Seminar on Utilization of Geothermal Energy for Electric Power Production and Space Heating, Florence, pp. 1–18. Bono, P., Capelli, G., Cattena, C., 1985. Valutazione sullo studio dell'ambiente del bacino idrografico del fiume Mignone: caratteristiche idrogeologiche. Provincia di Roma — Assessorato Ambiente, Università degli Studi “La Sapienza. Assessorato all'Ambiente ed Ecologia, Provincia di Roma. Bréas, O., Guillou, C., Reniero, F., Wada, E., 2001. The global methane cycle: isotopes and mixing ratios, sources and sinks. Isot. Environ. Health Stud. 37, 257–379. Buonasorte, G., Fiordalisi, A., Pandelli, E., Rossi, U., Sollevanti, F., 1987. Stratigraphic correlations and structural setting of the pre-neoautochthonous sedimentary sequences of Northern Latium. Period. Mineral. 56, 111–122. Calamai, A., Cataldi, R., Dall'Aglio, M., Ferrara, G.C., 1976. Preliminary report on the Cesano hot brine deposit (Northern Latium, Italy). Proc. 2nd U.N. Symposium on the Development and Use of Geothermal Energy, S. Francisco, USA, pp. 305–313. Canfield, D.E., 2001. Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43, 607–636. Capasso, G., Inguaggiato, S., 1998. A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem. 13, 631–642. Capelli, G., Mazza, R., Gazzetti, C., 2005. In: Pitagora (Ed.), Strumenti e strategie per la tutela e l'uso compatibile della risorsa idrica nel Lazio: gli acquiferi vulcanici, p. 191. Carella, R., Verdiani, G., Palmerini, C.G., Stefani, G.C., 1985. Geothermal activity in Italy: present status and future prospects. Geothermics 14, 247–254. Cartwright, I., Weaver, T., Tweed, S., Ahearne, D., Cooper, M., Czapnik, K., Tranter, J., 2002. Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem. Geol. 185, 71–91. Cataldi, R., Rendina, M., 1973. Recent discovery of a new geothermal field: Alfina. Geothermics 2, 106–116. Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., Calore, C., 1995. Geothermal ranking of Italian territory. Geothermics 24, 115–129. Cavarretta, G., Lombardi, G., 1992. Origin of sulphur in minerals and fluids from Latium (Italy): isotopic constraints. Eur. J. Mineral. 4, 1311–1329. Cavarretta, G., Tecce, F., 1987. Contact metasomatic and hydrothermal minerals in the SH2 well, Sabatini Volcanic District, Latium, Italy. Geothermics 2, 127–145. Ceccarelli, A., Celati, R., Grassi, S., Minissale, A., Ridolfi, A., 1987. The southern boundary area of the Larderello geothermal field. Geothermics 16, 505–516. Cerling, T.E., Solomon, D.K., Quade, J., Bowman, J.R., 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta 55, 3403–3405. Charlou, J.L., Donval, J.P., Douville, E., Radford-Knoery, J., Fouquet, Y., Bougault, H., Jean- Baptiste, P., Stievenard, M., German, C., FLORES Cruise Scientific Party, 1997. High methane flux between 15_N and the Azores triple junction, Mid-Atlantic Ridge: hydrothermal and serpentinization processes. Eos Trans. AGU 78 (46), 83. Chiodini, G., 1994. Temperature, pressure and redox conditions governing the composition of the cold CO2 gases discharged in the volcanic area of North Latium (Central Italy). Appl. Geochem. 9, 287–295. Chiodini, G., Frondini, F., Ponziani, F., 1995. Deep structures and carbon dioxide degassing in Central Italy. Geothermics 24, 81–94. Chiodini, G., Frondini, F., Kerrick, D.M., Rogie, J., Parello, F., Peruzzi, L., Zanzari, A.R., 1999. Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. 105, 8423–8434. Cimarelli, C., De Rita, D., 2006. Relatively rapid emplacement of dome-forming magma inferred from strain analyses: the case of the acid Latian dome complexes (Central Italy). J. Volcanol. Geotherm. Res. 158, 106–116. Cortecci, G., Reyes, E., Berti, G., Casati, P., 1981. Sulfur and oxygen isotopes in Italian marine sulfate of Permian and Triassic age. Chem. Geol. 34, 65–79. Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 1702–1703. Craig, H., 1963. The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgi, E. (Ed.), Nuclear Geology on Geothermal Areas. Spoleto, CNR, (Italian Council for Research, Rome), pp. 17–54. Cross, M.M., Manninga, D.A.C., Bottrell, S.H., Wordenc, R.H., 2004. Thermochemical sulphate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs. Org. Geochem. 35, 393–404.Dall'Aglio, M., Duchi, V., Minissale, A., Guerrini, A., Tremori, M., 1994. Hydrogeochemistry of the volcanic district in the Tolfa and Sabatini Mountains in central Italy. J. Hydrol. 154, 195–217. Darling, W.G., 1998. Hydrothermal hydrocarbon gases: I. Genesis and geothermometry. Appl. Geochem. 13, 815–824. De Rita, D., Funiciello, R., Corda, L., Sposato, A., Rossi, U., 1993. Volcanic units. In: Di Filippo, M. (Ed.), Sabatini Volcanic Complex, Quaderni de “La ricerca scientifica”: CNR, 114, pp. 33–79. Des Marais, D.J., Moore, J.G., 1984. Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planet. Sci. Lett. 69, 43–57. Di Girolamo, P., 1978. Geotectonic setting of Miocene–Quaternary volcanism in and around eastern Tyrrhenian Sea border (Italy) as deduced by major element geochemistry. Bull. Volcanol. 42–43, 229–250. Duchi, V., Minissale, A., 1995. Distribuzione delle manifestazioni gassose nel settore peritirrenico Tosco–Laziale e loro interazione con gli acquiferi superficiali. Boll. Soc. Geol. Ital. 114, 337–351. Duchi, V., Minissale, A., Paolieri, M., Prati, F., Valori, A., 1992. Chemical relationship between discharging fluids in the Siena–Radicofani graben and deep fluids produced by the geothermal fields of Mt. Amiata, Torre Alfina and Latera (central Italy). Geothermics 21, 401–413. Favara, R., Grassa, F., Ingaggiato, S., Pecoraino, G., Capasso, G., 2002. A simple method to determine the ä13C content of total dissolved inorganic carbon. Geofis. Int. 41, 313–320. Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., Valenza, M., 2002. Magma-derived gas influx and water–rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy. Geochim. Cosmochim. Acta 66, 963–981. Fiebig, J., Woodland, A.B., Spangenberg, J., Oschmann, W., 2007. Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim. Cosmochim. Acta 71, 3028–3039. Fiebig, J., Woodland, A., D'Alessandro, W., Puttmann, W., 2009. Excess methane in continental hydrothermal emissions is abiogenic. Geology 37, 495–498. Field, C., Lombardi, G., 1972. Sulfur isotopic evidence for the supergene origin of al unite deposits, Tolfa District, Italy. Miner. Deposita 7, 113–125. Fischer, F., Tropsch, H., 1926. Die Erodo¨lsynthese bei gewo¨hnlichem druck aus den vergangsprodukten der kohlen. Brennstoff Chem. 7, 97–116. Fischer, T.P., Giggenbach, W.F., Sano, Y., Williams, S.N., 1998. Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet. Sci. Lett. 160, 81–96. Foustoukos, D.I., Seyfried, W.E., 2004. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304, 1002–1004. Frondini, F., 2008. Geochemistry of regional aquifer systems hosted by carbonate– evaporite formations in Umbria and southern Tuscany (central Italy). Appl. Geochem. 23, 2091–2104. Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., Morgantini, N., 2009. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic–geothermal area (Italy). Appl. Geochem. doi:10.1016/j.apgeochem.2009.01.010. Funiciello, R., Mariotti, G., Parotto, M., Preite-Martinez, M., Tecce, F., Toneatti, R., Turi, B., 1979. Geology,mineralogy and stable isotope geochemistry of the Cesano geothermal field (Sabatini Mountains, Northern Latium, Italy). Geothermics 8, 55–73. Giggenbach, W.F., 1980. Geothermal gas equilibria. Geochim. Cosmochim. Acta 44, 2021–2032. Giggenbach, W.F., 1987. Redox processis governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl. Geochem. 2, 143–161. Giggenbach, W.F., 1988. Isotopic and chemical assessment of geothermal potential of the Coili Albani area, Latium region, Italy. Appl. Geochem. 3, 475–486. Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. Application of Geochemistry in Geothermal Reservoir Development. UNITAR, New York, pp. 253–273. Giggenbach, W.F., 1992. The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proc. of the International Symposium of Water– Rock Interaction, WRI-8, pp. 873–878. Giggenbach, W.F., 1993. Redox control of gas compositions in Philippines volcanic– hydrothermal systems. Geothermics 22, 575–587. Giggenbach, W.F., 1997. The origin and evolution of fluids in magmatic–hydrothermal systems, In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal ore Deposits, 3 rd Edition. Wiley, pp. 737–796. Giggenbach, W.F., Gougel, R.L., 1989. Method for the collection and analysis of geothermal and volcanic water and gas samples. NZ-DSIR Report, CD, 2387, p. 53. Giggenbach, W.F., Matsuo, S., 1991. Evaluation of results from second and third IAVCEI workshops on volcanic gases, Mt Usu, Japan, and White Island, New Zealand. Appl. Geochem. 6, 125–141. Grassi, S., Cortecci, G., 2005. Hydrogeology and geochemistry of themultilayered confined aquifer of the Pisa plain (Tuscany — central Italy). Appl. Geochem. 20, 41–54. Hilton, D.R., Hammerschmidt, K., Teufel, S., Friedrichsen, H., 1993. Helium isotope characteristics of Andean geothermal fluids and lavas. Earth Planet. Sci. Lett. 120, 265–282. Holloway, J.R., 1984. Graphite–CH4–H2O–CO2 equilibria at low-grade metamorphic conditions. Geology 12, 455–458. Holm, N.G., Charlou, J.L., 2001. Initial indications of abiotic formation of hydrocarbons in the rainbow ultramafic hydrothermal system, Mid-Atlantic ridge. Earth Planet. Sci. Lett. 191 (1–2), 1–8. Honma, H., Itihara, Y., 1981. Distribution of ammonium in minerals of metamorphic and granitic rocks. Geochim. Cosmochim. Acta 13, 225–232. Hooker, P.J., Bertrami, R., Lombardi, S., O'Nions, R.K., Oxburgh, E.R., 1985. Helium-3 anomalies and crust–mantle interaction in Italy. Geochim. Cosmochim. Acta 49, 2505–2513. Horita, J., Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057.Hu, G., Ouyang, Z.,Wang, X.,Wen, Q., 1998. Carbon isotope fractionation in the process of Fischer–Tropsch reaction in primitive solar nebular. Sci. China, Ser. D 41, 202–207. Hulston, J.R., Lupton, J.E., 1996. Helium isotope studies of geothermal fields in the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 74, 297–321. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York. Inguaggiato, S., Rizzo, A., 2004. Dissolved helium isotope ratios in ground-waters: a new technique based on gas–water re-equilibration and its application to a volcanic area. Appl. Geochem. 19, 665–673. Inguaggiato, S., Pecoraino, G., D'Amore, F., 2000. Chemical and isotopical characterization of fluid manifestations of Ischia Island, Italy. J. Volcanol. Geotherm. Res. 99, 151–178. Javoy, M., Pineau, F., Allegre, C.J., 1982. Carbon geodynamic cycle. Nature 300, 171–173. Jenden, P.D., Kaplan, I.R., Poreda, R.J., Craig, H., 1988. Origin of nitrogen-rich natural gases in the California Great Valley: evidence for helium, carbon and nitrogen isotope ration. Geochim. Cosmochim. Acta 52, 851–861. Kenney, J.K., 1995. In: Sugisaki, R., Mimura, K. (Eds.), Comment on Mantle hydrocarbons: Abiotic or Biotic: Geochim. Cosmochim. Acta, 59, pp. 3857–3858. Kiyosu, Y., Krouse, H.R., 1990. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem. J. 24, 21–27. Kiyosu, Y., Asada, N., Yoshida, Y., 1992. Origin of light hydrocarbon gases from the Matsukawa geothermal area in Japan. Chem. Geol. 94, 321–329. Krouse, R.H., Viau, C.A., Eliuk, L.S., Ueda, A., Halas, S., 1988. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333, 415–419. Kugler, E.L., Steffgen, F.W., Kugler, E.L., Steffgen, F.W., 1979. Hydrocarbon synthesis from carbon monoxide and hydrogen. Advances in Chemistry Series 178. American Chemical Society, Washington, DC. Machel, H.G., Krouse, H.R., Sassen, R., 1995. Products and distinguishing criteria of bacterial and thermochemical sulphate reduction. Appl. Geochem. 10, 373–389. Magro, G., Ruggieri, G., Gianelli, G., Bellani, S., 2003. Helium isotopes in paleofluids and present-day fluids of the Larderello geothermal field: constraints on the heat source. J. Geophys. Res. 108B1. doi:10.1029/2001JB001590. Mamyrin, B.A., Tolstikhin, I.N., 1984. Helium Isotopes in Nature. Elsevier, Amsterdam. Marini, L., Bonaria, V., Guidi, M., Hunziker, J.C., Ottonello, G., Vetuschi Zuccolini, M., 2000. Fluid geochemistry of the Acqui Terme–Visone geothermal area (Piemonte, Italy). Appl. Geochem. 15, 917–935. Marini, L., Gambardella, B., Principe, C., Arias, A., Brombach, T., Hunziker, J.C., 2002. Characterization of magmatic sulfur in the Aegean Island arc by means of the ä34S values of fumarolic H2S, elemental S, and hydrothermal gypsum from Nysiros and Milos islands. Earth Planet. Sci. Lett. 200, 15–31. Martelli, M., Nuccio, P.M., Stuart, F.M., Burgess, R., Ellam, R.M., Italiano, F., 2008. Helium–strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 224, 295–308. Marty, B., Jambon, A., 1987. C/3He in volatile fluxes from the solid Earth: implications, for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26. Marty, B., O'Nions, R.K., Oxburgh, E.R., Martel, D., Lombardi, S., 1992. Helium isotopes in Alpine regions. Tectonophysics 206, 71–78. Marty, B., Trull, T., Lussiez, P., Basile, I., Tanguy, J.C., 1994. He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet. Sci. Lett. 126, 23–39. McCollom, T.M., 2003. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3). Geochim. Cosmochim. Acta 67, 311–317. McCollom, T.M., Seewald, J.S., 2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401. Mingram, B., Brauer, K., 2001. Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim. Cosmochim. Acta 65, 273–288. Minissale, A., 2004. Origin, transport and discharge of CO2 in Central Italy. Earth Sci. Rev. 66, 89–141. Minissale, A., Duchi, V., 1988. Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy. J. Volcanol. Geotherm. Res. 35, 237–252. Minissale, A., Evans, W., Magro, G., Vaselli, O., 1997a. Multiple source components in gas manifestations from north-central Italy. Chem. Geol. 142, 175–192. Minissale, A., Magro, G., Vaselli, O., Verrucchi, C., Perticone, I., 1997b. Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). J. Volcanol. Geotherm. Res. 79, 223–251. Minissale, A., Kerrick, D.M., Magro, G., Murrell, M.T., Paladini, M., Rihs, S., Sturchio, N.C., Tassi, F., Vaselli, O., 2002. Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet. Sci. Lett. 203, 709–728. Montegrossi, G., Tassi, F., Vaselli, O., Buccianti, A., Garofano, K., 2001. Sulfur species in volcanic gases. Anal. Chem. 73, 3709–3715. Negrel, P., Casanova, J., Azaroual, M., Guerrot, C., Cocherie, A., Fouillac, C., 1999. Isotope geochemistry of mineral spring waters in the Massif Central France. In: Armannsson, H. (Ed.), Geochemistry of Earth's Surface. Rotterdam, The Netherlands. Ohmoto, H., Lasaga, A.C., 1982. Kinetics of reactions between aqueous sulphates and sulphides in hydrothermal system. Geochim. Cosmochim. Acta 46, 1727–1745. Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon, In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd edition. Wiley and Sons Ltd, Chichester, pp. 509–567. Oremland, R.S., Miller, L.G., Whiticar, M.J., 1987. Sources and flux of natural gases from Mono Lake, California. Geochim. Cosmochim. Acta 51, 2915–2929. Parkhurst, D.L., Appelo, A.A.J., 1999. User's guide to PHREEQC (version 2) — a computer program for speciation, batch-reaction, one dimensional transport and inverse geochemical modeling. U.S.G.S. Water Res. Inv. Rep. 99–4259, 312.Peccerillo, A., 1999. Multiple mantle metasomatism in central–southern Italy: geochemical effects, timing and geodynamic implications. Geology 27, 315–318. Peccerillo, A., Poli, G., Tolomeo, L., 1984. Genesis, evolution and tectonic significance of K-rich volcanics from the Alban Hills (Roman Comagmatic Region) as inferred from trace element geochemistry. Contrib. Mineral. Petrol. 86, 230–240. Pizzino, L., Galli, G., Mancini, C., Quattrocchi, F., Scarlato, P., 2002. Natural gas hazard (CO2, 222Rn) within a quiescent volcanic region and its relations with tectonics: the case of the Ciampino–Marino area, Alban Hills Volcano. Italy. Nat. Hazards 27, 257–287. Poreda, R.J., Craig, H., 1989. Helium isotope ratios in circum-Pacific volcanic arcs. Nature 338, 473–478. Poreda, R.J., Jeffrey, A.W.A., Kaplan, L.R., Craig, H., 1988. Magmatic helium in subduction-zone natural gases. Chem. Geol. 71, 199–210. Rice, D.D., Claypool, G.E., 1981. Generation, accumulation, and resource potential of biogenic gas. AAPG Bull. 65, 5–25. Risacher, F., Alonso, H., Salazar, C., 2002. Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile. Chem. Geol. 187, 39–57. Rollinson, H., 1993. Using Geochemical Data. Longman Group, London. Rowe, G.L., 1994. Oxygen, hydrogen, and sulfur isotope systematic of the crater lake system of Poás Volcano, Costa Rica. Geochem. J. 28, 263–287. Rye, R.O., Bethke, P.M., Wasserman, M.D., 1992. The stable isotope geochemistry of acid sulfate alteration. Econ. Geol. 87, 225–262. Sakai, H., 1968. Isotopic properties of sulfur compounds in hydrothermal processes. Geochim. J. 2, 29–49. Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 44, 649–661. Schoell, M., 1988. Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10. Sepulveda, F., Lahsen, A., Powell, T., 2007. Gas geochemistry of the Cordón Caulle geothermal system, Southern Chile. Geothermics 36, 389–420. Shaw, D.M., Sturchio, N.C., 1992. Boron–lithium relationships in rhyolites and associated thermal waters of young silicic calderas, with comments on incompatible element behaviour. Geochim. Cosmochim. Acta 56, 3723–3731. Sherwood Lollar, B., Westgate, T.D., Ward, J.A., Slater, G.F., Lacrampe-Couloume, G., 2002. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524. Shock, E.L., 1993. Hydrothermal dehydration of aqueous organic compounds. Geochim. Cosmochim. Acta 57, 3341–3349. Snyder, G., Poreda, R.J., Fehn,U., Hunt, A., 2003. Sources of nitrogen andmethane in Central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components. Geochem. Geophys. Geosys. doi:10.1029/2002GC000363. Sugisaki, R., Mimura, K., 1994. Mantle hydrocarbons: abiotic or biotic? Geochim. Cosmochim. Acta 58, 2527–2542. Szatmari, P., 1989. Petroleum formation by Fischer–Tropsch synthesis in plate tectonics. AAPG Bull. 73, 989–998. Taran, Y., Fisher, T.P., Cienfuegos, E., Morales, P., 2002. Geochemistry of hydrothermal fluids from an intraplate ocean island: Everman volcano, Socorro Island, Mexico. Chem. Geol. 188, 51–63. Tedesco, D., Scarsi, P., 1999. Intensive gas sampling of noble gases and carbon at Vulcano Island (southern Italy). J. Geophys. Res. 104-B5, 10499–10510. Tedesco,D.,Allard,P.,Sano, Y.,Wakita, H.,Pece, R.,1990.Helium-3insubaerialandsubmarine fumaroles of Campi Flegrei caldera, Italy. Geochim. Cosmochim. Acta 54, 1105–1116. Thode, H.G., 1991. Sulphur isotope in nature and the environment: an overview. In: Krouse, H.R., Grinenko, V.A. (Eds.), Stable Isotopes — Natural and Anthropogenic Sulphur in the Environment. : Scope, 43. Wiley, Chichester, pp. 1–23. Vaselli, O., Tassi, F., Montegrossi, G., Capaccioni, B., Giannini, L., 2006. Sampling and analysis of volcanic gases. Acta Volcanol. 18, 65–76. Verma, S., Santoyo, E., 1997. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J. Volcanol.Geotherm. Res. 79, 9–23. Welhan, J.A., Craig, H., 1979. Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geophys. Res. Lett. 6, 829–831. Welhan, J.A., Poreda, R.J., Rison, W., Craig, H., 1988. Helium isotopes in geothermal and volcanic gases of the western United States. I. Regional variability and magmatic origin. J. Volcanol. Geotherm. Res. 34, 185–199. Whitfield, M., 1978. Activity coefficients in natural waters. In: Pytkowicz, R.M. (Ed.), Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton, FL, pp. 153–300. Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314. Whiticar, M.J., Suess, E., 1990. Hydrothermal hydrocarbon gases in the sediments of the King-George Basin, Bransfield Strait, Antarctica. Appl. Geochem. 5, 135–147. Worden, R.H., Smalley, P.C., 1996. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chem. Geol. 133, 157–171. Wynn, J.G., Sumrall, J.B., Onac, B.P., 2010. Sulfur isotopic composition and the source of dissolved sulphur species in thermo-mineral springs of the Cerna Valley, Romania. Chem. Geol. 271, 31–43. Yuen, G.U., Pecore, J.A., Kerridge, J.F., Pinnavaia, T.J., Rightor, E.G., Flores, J., Wedeking, R., Des Marais, D.J., Chang, S., 1990. Carbon isotope fractionation in the Fischer– Tropsch type reactions. Lunar and Planetary Science Conference Proc. XXI, Houston, Texas, pp. 1367–1368. Zhang, J., Quay, P.D., Wilbur, D.O., 1995. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 82, 161–173. Zuppi, G.M., Fontes, J.C., Letolle, R., 1974. Isotopes du milieu et circulation d'eaux sulfurées dans le Latium. Isotope Techniques in Groundwater Hydrology, 1. IAEA, Vienna, pp. 341–361.en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCinti, D.en
dc.contributor.authorProcesi, M.en
dc.contributor.authorTassi, F.en
dc.contributor.authorMontegrossi, G.en
dc.contributor.authorSciarra, A.en
dc.contributor.authorVaselli, O.en
dc.contributor.authorQuattrocchi, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, 50121 Firenze, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, 50121 Firenze, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Firenze, via G. La Pira 4, 50121 Firenze, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptCNR-Institute of Geosciences and Earth Resources-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptEarth Science Dept., University of Florence, Via La Pira 4, Florence, 50121, Italy; (3) CNR - IGG, Via La Pira 4, Florence, 50121, Italy-
crisitem.author.orcid0000-0002-8995-3312-
crisitem.author.orcid0000-0003-0029-5235-
crisitem.author.orcid0000-0002-3319-4257-
crisitem.author.orcid0000-0002-2006-6117-
crisitem.author.orcid0000-0003-3767-3105-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Cinti et al. (2011).pdfmain article2.41 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

42
checked on Feb 10, 2021

Page view(s) 5

1,547
checked on Apr 13, 2024

Download(s) 50

57
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric