Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6968
AuthorsCinti, D.* 
Procesi, M.* 
Tassi, F.* 
Montegrossi, G.* 
Sciarra, A.* 
Vaselli, O.* 
Quattrocchi, F.* 
TitleFluid geochemistry and geothermometry in the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Central Italy)
Issue Date2011
DOI10.1016/j.chemgeo.2011.02.017
URIhttp://hdl.handle.net/2122/6968
KeywordsGeochemistry Water Gas Stable isotope Geothermometry Central Italy
Subject Classification03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters 
03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases 
03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems 
AbstractA geochemical survey of 197 fluid discharges (cold and thermal waters and bubbling pools) and 15 gas emissions from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (Latium, Central Italy) was carried out in 2007–2008. The chemical and isotopic compositions of the fluid discharges indicate the occurrence of two main sources: 1) relatively shallow aquifers with Ca(Na,K)–HCO3 and Ca(Mg)–HCO3 compositions when trapped in volcanic and sedimentary formations, respectively; and 2) a deep reservoir, which is hosted in the Mesozoic carbonate sequence, rich in CO2 and having a Ca–SO4(HCO3) composition. Dissolution of a CO2-rich gas phase into the shallow aquifers produces high-TDS and high-pCO2 cold waters, while oxidation of deep-derived H2S to SO4 2− generates low-pH (b4) sulfate waters. The δ13C–CO2 values for gas emissions (from−2.8 to+2.7‰vs. VPDB) suggest that the origin of CO2 associated with the deep fluids ismainly related to thermo-metamorphic reactions within the carbonate reservoir, although significant mantle contribution may also occur. However, R/Ra values (0.37–0.62) indicate that He is mainly produced by a crustal source, with a minor component from a crust-contaminated mantle. On the basis of the δ13C–CH4 and δD–CH4 values (from −25.7 to −19.5‰ vs. VPDB and from −152 to −93.4‰ vs. VSMOW, respectively) CH4 production is associated with thermogenic processes, possibly related to abiogenic CO2 reduction within the carbonate reservoir. The δ34S–H2S values (from+9.3 to +10.4‰ vs. VCDT) are consistent with the hypothesis of a sedimentary source of sulfur from thermogenic reduction of Triassic sulfates. Geothermometric evaluations based on chemical equilibria CO2–CH4 and, separately, H2S suggest that the reservoir equilibriumtemperature is up to ~300 °C. The δDand δ18O data indicate thatwater recharging both the shallow and deep aquifers has a meteoric origin. Fluid geochemistry, coupled with gravimetric data and tectonic lineaments, supports the idea that significant contributions from a deep-seated geothermal brine are present in the Stigliano thermal fluid discharges. Exploration surveys investigated this area during 70's–90's for geothermal purposes. Nevertheless, presently the area is still under-exploited. The presence of thermal waters and anomalous heat flow together with the demographic growth of the last years,makes this site a suitable location for direct applications of the geothermal resource.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Cinti et al. (2011).pdfmain article2.41 MBAdobe PDFView/Open
Show full item record

Page view(s)

369
Last Week
1
Last month
checked on Jun 24, 2017

Download(s)

47
checked on Jun 24, 2017

Google ScholarTM

Check

Altmetric