Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6936

Authors: Folch, A.*
Costa, A.*
Durant, A.*
Macedonio, G.*
Title: A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application
Title of journal: Journal of Geophysical Research
Series/Report no.: /115(2010)
Publisher: AGU
Issue Date: 1-Sep-2010
DOI: 10.1029/2009JB007176
Keywords: volcanic ash
particle aggregation
Abstract: The occurrence of particle aggregation has a dramatic effect on the transport and sedimentation of volcanic ash. The aggregation process is complex and can occur under different conditions and in multiple regions of the plume and in the ash cloud. In the companion paper, Costa et al. develop an aggregation model based on a fractal relationship to describe the rate particles are incorporated into ash aggregates. The model includes the effects of both magmatic and atmospheric water present in the volcanic cloud and demonstrates that the rate of aggregation depends on the characteristics of the initial particle size distribution. The aggregation model includes two parameters, the fractal exponent Df, which describes the efficiency of the aggregation process, and the aggregate settling velocity correction factor ye, which influences the distance at which distal mass deposition maxima form. Both parameters are adjusted using features of the observed deposits. Here this aggregation model is implemented in the FALL3D volcanic ash transport model and applied to the 18 May 1980 Mount St. Helens and the 17–18 September 1992 Crater Peak eruptions. For both eruptions, the optimized values for Df (2.96–3.00) and ye (0.27–0.33) indicate that the ash aggregates had a bulk density of 700–800 kg m−3. The model provides a higher degree of agreement than previous fully empirical aggregation models and successfully reproduces the depositional characteristics of the deposits investigated over a large range of scales, including the position and thickness of the secondary maxima.
Appears in Collections:01.01.04. Processes and Dynamics
05.01.99. General or miscellaneous
01.01.07. Volcanic effects
Papers Published / Papers in press

Files in This Item:

File Description SizeFormatVisibility
folcos2010.pdfModeling and application of volcanic ash aggregation2.06 MBAdobe PDFonly authorized users View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA