Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6883
DC FieldValueLanguage
dc.contributor.authorallLorito, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCannelli, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRomano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMelini, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-01-24T12:01:08Zen
dc.date.available2011-01-24T12:01:08Zen
dc.date.issued2010-02-17en
dc.identifier.urihttp://hdl.handle.net/2122/6883en
dc.description.abstractWe (re)analyzed the source of the 26 December 2004 Sumatra-Andaman earthquake and tsunami through a nonlinear joint inversion of an inhomogeneous data set made up of tide gauges, satellite altimetry, and far-field GPS recordings. The purpose is twofold: (1) the retrieval of the main kinematics rupture parameters (slip, rake, and rupture velocity) and (2) the inference of the rigidity of the source zone. We independently estimate the slip from tsunami data and the seismic moment from geodetic data to derive the rigidity. Our results confirm that the source of the 2004 Sumatra-Andaman earthquake has a complex geometry, constituted by three main slip patches, with slip peaking at ~30 m in the southern part of the source. The rake direction rotates counterclockwise at the northern part of the source, according to the direction of convergence along the trench. The rupture velocity is higher in the deeper than in the shallower part of the source, consistent with the expected increase of rigidity with depth. It is also lower in the northern part, consistent with known variations of the incoming plate properties and shear velocity. Our model features a rigidity (20–30 GPa) that is lower than the preliminary reference Earth model (PREM) average for the seismogenic volume. The source rigidity is one of the factors controlling the tsunami genesis: for a given seismic moment, the lower the rigidity, the higher the induced seafloor displacement. The general consistence between our source model and previous studies supports the effectiveness of our approach to the joint inversion of geodetic and tsunami data for the rigidity estimation.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115(2010)en
dc.subjectSource processen
dc.subjectSumatraen
dc.subjectTsunamien
dc.subjectJoint Inversionen
dc.titleKinematics and source zone properties of the 2004 Sumatra-Andaman earthquake and tsunami: Nonlinear joint inversion of tide gauge, satellite altimetry, and GPS dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB02304en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.identifier.doi10.1029/2008JB005974en
dc.relation.referencesAblain, M., J. Dorandeu, P.-Y. Le Traon, and A. Sladen (2006), High-resolution altimetry reveals new characteristics of the December 2004 Indian Ocean tsunami, Geophys. Res. Lett., 33, L21602, doi:10.1029/2006GL027533. Ammon, C. J., et al. (2005), Rupture process of the 2004 Sumatra-Andaman earthquake, Science, 308, 1133–1139, doi:10.1126/science.1112260. Amoruso, A., L. Crescentini, and C. Fidani (2004), Effects of crustal layering on source parameter inversion from coseismic geodetic data, Geophys. J. Int., 159, 353–364, doi:10.1111/j.1365-246X.2004.02389. Banerjee, P., F. F. Pollitz, and R. Bürgmann (2005), The size and duration of the Sumatra-Andaman earthquake from far-field static offsets, Science, 308, 1769–1772, doi:10.1126/science.1113746. Banerjee, P., F. F. Pollitz, B. Nagarajan, and R. Bürgmann (2007), Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets, Bull. Seismol. Soc. Am., 97, S86–S102, doi:10.1785/0120050609. Bilek, S. L. (2007), Using earthquake source durations along the Sumatra-Andaman subduction system to examine fault-zone variations, Bull. Seismol. Soc. Am., 97, S62–S70, doi:10.1785/0120050622.[CrossRef] Bilek, S. L., and T. Lay (1998), Variation of interplate fault zone properties with depth in the Japan subduction zone, Science, 281, 1175–1178, doi:10.1126/science.281.5380.1175. Bilek, S. L., and T. Lay (1999), Rigidity variations with depth along interplate megathrust faults in subduction zones, Nature, 400, 443–446, doi:10.1038/22739. Bilek, S. L., K. Satake, and K. Sieh (2007), Introduction to the special issue on the 2004 Sumatra-Andaman earthquake and the Indian Ocean tsunami, Bull. Seismol. Soc. Am., 97, S1–S5, doi:10.1785/0120050633. Bilham, R. (2005), A flying start, then a slow slip, Science, 308, 1126–1127, doi:10.1126/science.1113363. Borrero, J. C. (2005), Field survey of northern Sumatra and Banda Aceh, Indonesia, after the tsunami and earthquake of 26 December 2004, Seismol. Res. Lett., 76, 312–320, doi:10.1785/gssrl.76.3.312. Boschi, E., E. Casarotti, R. Devoti, D. Melini, G. Pietrantonio, and F. Riguzzi (2006), Coseismic deformation induced by the Sumatra earthquake, J. Geodyn., 42, 52–62, doi:10.1016/j.jog.2006.05.002. Boschi, L., A. Piersanti, and G. Spada (2000), Global postseismic deformation: Deep earthquakes, J. Geophys. Res., 105, 631–652. Catherine, J. K., V. K. Gahalaut, and V. K. Sahu (2005), Constraints on rupture of the December 26, 2004, Sumatra earthquake from far-field GPS observations, Earth Planet. Sci. Lett., 237, 673–679, doi:10.1016/j.epsl.2005.07.012. Chlieh, M., et al. (2007), Coseismic slip and afterslip of the great (Mw9.15) Sumatra-Andaman earthquake of 2004, Bull. Seismol. Soc. Am., 97, S152–S173, doi:10.1785/0120050631. Dow, J. M., R. E. Neilan, and G. Gendt (2005), The International GPS Service (IGS): Celebrating the 10th anniversary and looking to the next decade, Adv. Space Res., 36, 320–326, doi:10.1016/j.asr.2005.05.125. Dragani, W. C., E. E. D'Onofrio, W. Grismeyera, and M. E. Fiore (2006), Tide gauge observations of the Indian ocean tsunami, December 26, 2004, in Buenos Aires coastal waters, Argentina, Cont. Shelf Res., 26, 1543–1550, doi:10.1016/j.csr.2006.03.002. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model (PREM), Phys. Earth Planet. Inter., 25, 297–356, doi:10.1016/0031-9201(81)90046-7. Fujii, Y., and K. Satake (2007), Tsunami source of 2004 Sumatra-Andaman earthquake inferred from tide-gauges and satellite data, Bull. Seismol. Soc. Am., 97, S192–S207, doi:10.1785/0120050613. Fujii, Y., and K. Satake (2008), Tsunami sources of the November 2006 and January 2007 Great Kuril earthquakes, Bull. Seismol. Soc. Am., 98, 1559–1571, doi:10.1785/0120070221. Gahalaut, V. K., B. Nagarajan, J. K. Catherine, and S. Kumar (2006), Constraints on 2004 Sumatra-Andaman earthquake rupture from GPS measurements in Andaman-Nicobar islands, Earth Planet. Sci. Lett., 242, 365–374, doi:10.1016/j.epsl.2005.11.051. Geist, E. L. (1999), Local tsunamis and earthquake source parameters, Adv. Geophys., 39, 117–209. Geist, E. L., and S. L. Bilek (2001), Effect of depth-dependent shear modulus on tsunami generation along subduction zones, Geophys. Res. Lett., 28, 1315–1318, doi:10.1029/2000GL012385. Geist, E. L., V. V. Titov, D. Arcas, F. P. Pollitz, and S. L. Bilek (2007), Implications of the December 26, 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction zone earthquakes, Bull. Seismol. Soc. Am., 97, S249–S270, doi:10.1785/0120050619. Gower, J. F. (2005), Jason 1 detects December 26, 2004 tsunami, Eos Trans. AGU, 86, 37–38, doi:10.1029/2005EO040002. Grilli, S. T., M. Ioualalen, J. Asavanant, F. Shi, J. T. Kirby, and P. Watts (2007), Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami, J. Waterw. Port Coastal Ocean Eng., 133, 414–428, doi:10.1061/(ASCE)0733-950X(2007)133:6(414). Gu, Y. J. (2006), Preface to special issue, Surv. Geophys., 27, 601–602, doi:10.1007/s10712-006-9014-3. Hashimoto, M., N. Choosakul, M. Hashizume, S. Takemoto, H. Takiguchi, Y. Fukuda, and K. Fujimori (2006), Crustal deformations associated with the great Sumatra-Andaman earthquake deduced from continuous GPS observation, Earth Planets Space, 58, 203–209. Hébert, H., A. Sladen, and F. Schindelé (2007), Numerical modeling of the great 2004 Indian Ocean tsunami: Focus on the Mascarene Islands, Bull. Seismol. Soc. Am., 97, S208–S222, doi:10.1785/0120050611. Hirata, K., K. Satake, Y. Tanioka, T. Kuragano, Y. Hasegawa, Y. Hayashi, and N. Hamada (2006), The 2004 Indian Ocean tsunami: Tsunami source model from satellite altimetry, Earth Planets Space, 58, 195–201. Hoechner, A., A. Y. Babeyko, and S. V. Sobolev (2008), Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami, Geophys. Res. Lett., 35, L08310, doi:10.1029/2007GL033133. Ichinose, G., P. Somerville, H. K. Thio, R. Graves, and D. O'Connell (2007), Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data, J. Geophys. Res., 112, B07306, doi:10.1029/2006JB004728. Ioualalen, M., J. Asavanant, N. Kaewbanjak, S. T. Grilli, J. T. Kirby, and P. Watts (2007), Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand, J. Geophys. Res., 112, C07024, doi:10.1029/2006JC003850. Jade, S., M. Ananda, P. Kumar, and S. Banerjee (2005), Co-seismic and post-seismic displacements in Andaman and Nicobar islands from GPS measurements, Curr. Sci., 88, 1980–1984. Jaffe, B. E., et al. (2006), Northwest Sumatra and offshore islands field survey after the December 2004 Indian Ocean tsunami, Earthquake Spectra, 22, S105–S135, doi:10.1193/1.2207724. Ji, C., D. J. Wald, and D. V. Helmberger (2002), Source description of the 1999 Hector Mine, California earthquake, part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 92, 1192–1207, doi:10.1785/0120000916. Joseph, A., J. T. Odametey, E. K. Nkebi, A. Pereira, R. G. Prabhudesai, P. Mehra, A. B. Rabinovich, V. Kumar, S. Prabhu-Desai, and P. Woodworth (2006), The 26 December 2004 Sumatra tsunami recorded on the coast of West Africa, Afr. J. Mar. Sci., 28, 705–712. Kennett, B. L. N., and P. R. Cummins (2005), The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra-Andaman earthquake, Earth Planet. Sci. Lett., 239, 1–8, doi:10.1016/j.epsl.2005.08.015. Lay, T., et al. (2005), The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308, 1127–1133, doi:10.1126/science.1112250. Lorito, S., A. Piatanesi, and A. Lomax (2008a), Rupture process of the 18 April 1906 California earthquake from near-field tsunami waveform inversion, Bull. Seismol. Soc. Am., 98, 832–845, doi:10.1785/0120060412. Lorito, S., F. Romano, A. Piatanesi, and E. Boschi (2008b), Source process of the September 12, 2007, Mw8.4 southern Sumatra earthquake from tsunami tide gauge record inversion, Geophys. Res. Lett., 35, L02310, doi:10.1029/2007GL032661. Mader, C. L. (2001), Numerical Modeling of Water Waves, CRC Press, Boca Raton, Fla. Marks, K. M., and W. H. F. Smith (2006), An evaluation of publicly available bathymetry grids, Mar. Geophys. Res., 27, 19–34, doi:10.1007/s11001-005-2095-4. Masterlark, T., and K. L. H. Hughes (2008), Next generation of deformation models for the 2004 M9 Sumatra-Andaman earthquake, Geophys. Res. Lett., 35, L19310, doi:10.1029/2008GL035198. Megna, A., S. Barba, S. Santini, and M. Dragoni (2008), Effects of geological complexities on coseismic displacement: Hints from 2D numerical modelling, Terra Nova, 20, 173–179, doi:10.1111/j.1365-3121.2008.00800.x. Menke, W., H. Abend, D. Bach, K. Newman, and V. Levin (2006), Review of the source characteristics of the Great Sumatra-Andaman islands earthquake of 2004, Surv. Geophys., 27, 603–613, doi:10.1007/s10712-006-9013-4. Merrifield, M. A., et al. (2005), Tide gauge observations of the Indian Ocean tsunami, December 26, 2004, Geophys. Res. Lett., 32, L09603, doi:10.1029/2005GL022610. Nagarajan, B., I. Suresh, D. Sundar, R. Sharma, A. K. Lal, S. Neetu, S. S. C. Shenoi, S. R. Shetye, and D. Shankar (2006), The great tsunami of 26 December 2004: A description based on tide-gauge data from the Indian subcontinent and surrounding areas, Earth Planets Space, 58, 211–215. Obura, D. (2006), Impacts of the 26 December 2004 tsunami in eastern Africa, Ocean Coastal Manage., 49, 873–888, doi:10.1016/j.ocecoaman.2006.08.004. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040. Piatanesi, A., and S. Lorito (2007), Rupture process of the 2004 Sumatra-Andaman earthquake from tsunami waveform inversion, Bull. Seismol. Soc. Am., 97, S223–S231, doi:10.1785/0120050627. Piatanesi, A., A. Cirella, P. Spudich, and M. Cocco (2007), A global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquake, J. Geophys. Res., 112, B07314, doi:10.1029/2006JB004821. Piersanti, A., G. Spada, R. Sabadini, and M. Bonafede (1995), Global post-seismic deformation, Geophys. J. Int., 120, 544–566, doi:10.1111/j.1365-246X.1995.tb01838.x. Pietrzak, J., A. Socquet, D. Ham, W. Simon, C. Vigny, R. J. Labeur, E. Schrama, G. Stelling, and D. Vatvani (2007), Defining the source region of the Indian Ocean tsunami from GPS, altimeters, tide gauges and tsunami models, Earth Planet. Sci. Lett., 261, 49–64, doi:10.1016/j.epsl.2007.06.002. Rabinovich, A. B., and R. E. Thomson (2007), The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the World Ocean part 1. Indian Ocean and South Africa, Pure Appl. Geophys., 164, 261–308, doi:10.1007/s00024-006-0164-5. Rabinovich, A. B., R. E. Thomson, and F. E. Stephenson (2006), The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans, Surv. Geophys., 27, 647–677, doi:10.1007/s10712-006-9000-9. Rhie, J., D. Dreger, R. Bürgmann, and B. Romanowicz (2007), Slip of the 2004 Sumatra-Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets, Bull. Seismol. Soc. Am., 97, S115–S127, doi:10.1785/0120050620. Rothman, D. (1986), Automatic estimation of large residual statics corrections, Geophysics, 51, 332–346, doi:10.1190/1.1442092. Sambridge, M., J. Braun, and H. McQueen (1995), Geophysical parameterization and interpolation of irregular data using natural neighbours, Geophys. J. Int., 122, 837–857, doi:10.1111/j.1365-246X.1995.tb06841.x. Satake, K., E. A. Okal, and J. C. Borrero (2007), Tsunami and its hazard in the Indian and Pacific Oceans: Introduction, Pure Appl. Geophys., 164, 249–259, doi:10.1007/s00024-006-0172-5. Sen, M., and P. L. Stoffa (1991), Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 56, 1624–1638, doi:10.1190/1.1442973. Seno, T., and K. Hirata (2007), Did the 2004 Sumatra-Andaman earthquake involve a component of tsunami earthquakes?, Bull. Seismol. Soc. Am., 97, S296–S306, doi:10.1785/0120050615. Shapiro, N. M., M. H. Ritzwoller, and E. R. Engdahl (2008), Structural context of the great Sumatra-Andaman islands earthquake, Geophys. Res. Lett., 35, L05301, doi:10.1029/2008GL033381. Sindhu, B., I. Suresh, A. S. Unnikrishnan, N. V. Bhatkar, S. Neetu, and G. S. Michael (2007), Improved bathymetric datasets for the shallow water regions in the Indian Ocean, J. Earth Syst. Sci., 116, 261–274, doi:10.1007/s12040-007-0025-3. Sladen, A., and H. Hébert (2008), On the use of satellite altimetry to infer the earthquake rupture, characteristics: Application to the 2004 Sumatra event, Geophys. J. Int., 172, 707–714, doi:10.1111/j.1365-246X.2007.03669.x. Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, Geophysics, 55, 293–305, doi:10.1190/1.1442837. Smith, W. H. F., R. Scharroo, V. V. Titov, D. Arcas, and B. K. Arbic (2005), Satellite altimeters measure tsunami, Oceanography, 18, 11–13. Soldati, G., A. Piersanti, and E. Boschi (1998), Global postseismic gravity changes of a viscoelastic Earth, J. Geophys. Res., 103, 29,867–29,885. Spudich, P., and D. P. Miller (1990), Seismic site effects and the spatial interpolation of earthquake seismograms: Results using aftershocks of the 1986 North Palm Springs, California, earthquake, Bull. Seismol. Soc. Am., 80, 1504–1532. Stein, S., and E. A. Okal (2005), Speed and size of the Sumatra earthquake, Nature, 434, 581–582, doi:10.1038/434581a. Subarya, C., M. Chlieh, L. Prawirodirdjo, J.-P. Avouac, Y. Boch, K. Sieh, A. J. Meltzmer, D. H. Natawidjaja, and R. McCaffrey (2006), Plate-boundary deformation associated with the great Sumatra-Andaman earthquake, Nature, 440, 46–51, doi:10.1038/nature04522. Tanioka, Y., E. L. Geist, and N. T. Puspito (2006a), Preface to special issue “The 2004 Great Sumatra Earthquake and Tsunami”, Earth Planets Space, 58, 111. Tanioka, Y., Yudhicara, T. Kususose, S. Kathiroli, Y. Nishimura, S. I. Iwasaki, and K. Satake (2006b), Rupture process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms, Earth Planets Space, 58, 203–209. Thomson, R. E., A. B. Rabinovich, and M. V. Krassovski (2007), Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada, Geophys. Res. Lett., 34, L15607, doi:10.1029/2007GL030685. Tinti, S., and R. Tonini (2005), Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean, J. Fluid Mech., 535, 33–64, doi:10.1017/S0022112005004532. Titov, V., A. B. Rabinovich, H. O. Mofjeld, R. E. Thomson, and F. I. González (2005), The global reach of the 26 December 2004 Sumatra tsunami, Science, 309, 2045–2048, doi:10.1126/science.1114576. Tsuji, Y., Y. Namegaya, H. Matsumoto, S.-I. Iwasaki, W. Kambua, M. Sriwichai, and V. Meesuk (2006), The 2004 Indian tsunami in Thailand: Tsunami height and tide-gauge records, Earth Planets Space, 58, 223–232. Vigny, C., et al. (2005), Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia, Nature, 436, 201–206, doi:10.1038/nature03937. Wang, R., F. L. Lorenzo, and F. Roth (2003), Computation of deformation induced by earthquakes in multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP, Comput. Geosci., 29, 195–207, doi:10.1016/S0098-3004(02)00111-5. Wessel, P., and W. H. F. Smith (1998), New, improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579, doi:10.1029/98EO00426. Zhao, S., R. D. Müller, Y. Takahashi, and Y. Kaneda (2004), 3-D finite-element modelling of deformation and stress associated with faulting: Effect of inhomogeneous crustal structures, Geophys. J. Int., 157, 629–644, doi:10.1111/j.1365-246X.2004.02200.x.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLorito, S.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorCannelli, V.en
dc.contributor.authorRomano, F.en
dc.contributor.authorMelini, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1458-2131-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0002-6711-2264-
crisitem.author.orcid0000-0003-2725-3596-
crisitem.author.orcid0000-0002-5383-2375-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lorito_JGR_2010.pdfMain article2.84 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

21
checked on Feb 10, 2021

Page view(s) 50

268
checked on Apr 20, 2024

Download(s)

31
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric