Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6876
DC FieldValueLanguage
dc.contributor.authorallPesci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallTeza, G.; Università Padova (Geoscienze)en
dc.contributor.authorallBonali, E.; Università Bologna (DAPT)en
dc.date.accessioned2011-01-24T09:04:20Zen
dc.date.available2011-01-24T09:04:20Zen
dc.date.issued2011-01-14en
dc.identifier.urihttp://hdl.handle.net/2122/6876en
dc.description.abstractAn empirical approach is proposed in order to evaluate the largest spot spacing allowing the appropriate resolution to recognize the required surface details in a terrestrial laser scanner (TLS) survey. The suitable combination of laser beam divergence and spot spacing for the effective scanning angular resolution has been studied by numerical simulation experiments with an artificial target taken from distances between 25 m and 100 m, and observations of real surfaces. The tests have been performed by using the Optech ILRIS-3D instrument. Results show that the discrimination of elements smaller than a third of the beam divergence (D) is not possible and that the ratio between the used spot-spacing (ss) and the element size (TS) is linearly related to the acquisition range. The zero and first order parameters of this linear trend are computed and used to solve for the maximum efficient ss at defined ranges for a defined TS. Despite the fact that the parameters are obtained for the Optech ILRIS-3D scanner case, and depend on its specific technical data and performances, the proposed method has general validity and it can be used to estimate the corresponding parameters for other instruments. The obtained results allow the optimization of a TLS survey in terms of acquisition time and surface details recognition.en
dc.language.isoEnglishen
dc.relation.ispartofRemote Sensingen
dc.relation.ispartofseries/3 (2011)en
dc.subjectinstruments; LiDAR; terrestrial laser scanning; resolution; spatial samplingen
dc.titleTerrestrial Laser Scanner Resolution: Numerical Simulations and Experiments on Spatial Sampling Optimizationen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber167-184en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.identifier.doi10.3390/rs3010167en
dc.relation.references1. Vosselman, G.; Maas, H.-G. Airborne and Terrestrial Laser Scanning; Whittles Publishing: Dunbeath, UK, 2010; pp. 1–336. 2. GIM International Terrestrial Laser Scanner Product Survey. Available online: http://www.gim-international.com/files/productsurvey_v_pdfdocument_33.pdf (accessed on 29 December 2010). Remote Sens. 2011, 3 184 3. Huising, E.J.; Gomes Pereira, L.M. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS J. Photogramm. Remote Sens. 1998, 53, 245–261. 4. Lichti, D.D.; Jamtsho, S. Angular resolution of terrestrial laser scanners. Photogramm. Rec. 2006, 21, 141–160. 5. Zhu, L.; Mu, Y.; Shi, R. Study on the Resolution of Laser Scanning Point Cloud. In Proceedings of 2008 IEEE International Geoscience & Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; IEEE: Piscataway, NJ, USA, 2008; Volume 2, pp. 1136–1139. 6. Iavarone, A. Laser scanner fundamentals. Professional Surveyor Magazine September 2002; Volume 22. Available online: http://www.profsurv.com/magazine/article.aspx?i=949 (accessed on 29 December 2010). 7. Optech ILRIS-3D Laser Scanner Description. Available online: http://www.optech.ca/ prodilris.htm (accessed on 1 December 2010). 8. Shannon, C. Communication in the presence of noise. Proc. IEEE 1998, 86, 447–457. 9. Koechner, W. Solid-State Laser Engineering, 5th ed.; Springer-Verlag: Berlin Heidelberg, Germany; New York, NY, USA, 2000; pp. 195–201. 10. Boreman, G.D. Modulation Transfer Function in Optical and Electro-Optical Systems; SPIE Optical Engineering Press: Bellingham, WA, USA, 2001; pp. 1–120. 11. Pesci, A.; Teza, G. Terrestrial laser scanner and retro-reflective targets: An experiment for anomalous effects investigation. Int. J. Remote Sens. 2008, 29, 5749–5765. 12. Franceschi, M.; Teza, G.; Preto, N.; Pesci, A.; Galgaro, A; Girardi, S. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 2009, 64, 522–528. 13. Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pat. Anal. Machine Intell. 1990, 12, 629–639. 14. Gilboa, G.; Zeevi, Y.Y.; Sochen, N. Anisotropic Selective Inverse Diffusion for Signal Enhancement in the Presence of Noise. In Proceedings of IEEE ICASSP-2000, Istanbul, Turkey, 5–9 June 2000; IEEE: Piscataway, NJ, USA, 2000; Volume I, pp. 221–224. 15. Boehler, W.; Bordas Vicent, M.; Marbs, A. Investigating Laser Scanner Accuracy. In Proceedings of XIX CIPA Symposium, Antalya, Turkey, 30 September–4 October 2003; Available online: http://www-group.slac.stanford.edu/met/Align/Laser_Scanner/laserscanner_accuracy.pdf (accessed on 29 December 2010). 16. The MATLAB scripts developed to perform the numerical simulations can be requested from mail to pesci@bo.ingv.it or giordano.teza@unipd.it.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorPesci, A.en
dc.contributor.authorTeza, G.en
dc.contributor.authorBonali, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentUniversità Padova (Geoscienze)en
dc.contributor.departmentUniversità Bologna (DAPT)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento di Geoscienze - Univ. di Padova-
crisitem.author.orcid0000-0003-1863-3132-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
TLR_res_RS pubblicato.pdf37.94 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

64
checked on Feb 10, 2021

Page view(s)

149
checked on Apr 17, 2024

Download(s)

29
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric