Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/681

Authors: Afraimovich, E. L.*
Lesyuta, O. S.*
Ushakov, I. I.*
Voeykov, S. V.*
Title: Geomagnetic storms and the occurrence of phase slips in the reception of GPS signals
Issue Date: 2002
Series/Report no.: 45 (1)
URI: http://hdl.handle.net/2122/681
Abstract: We have investigated a dependence of the relative density of GPS phase slips on the geomagnetic disturbance level. The study is based on using Internet-available selected data from the global GPS network, with the simultaneously handled number of receiving stations ranging from 160 to 323. The analysis used four days from the period 1999-2000, with the values of the geomagnetic field disturbance index Dst from 5 to – 300 nT. During strong magnetic storms, the relative density of phase slips on mid-latitudes exceeds that for magnetically quiet days by one-two orders of magnitude as a minimum, and reaches a few percent of the total density of observations. Furthermore, the level of phase slips for the GPS satellites located on the sunward side of the Earth was by a factor of 5-10 larger compared with the opposite side of the Earth. The level of slips of L 1 phase measurements at the fundamental GPS frequency is at least one order of magnitude lower than that in L 1 – L 2 measurements. The slips of L 1 – L 2 measurements are most likely to be caused by the high level of slips of L 2 phase measurements at the auxiliary frequency. As an alternative, we developed and tested a new method for determining TEC variations using only data on the pseudo-range and phase measurements at fundamental frequency L 1 . The standard deviation of the TEC variations which were obtained in phase measurements at two frequencies, L 1 – L 2 , and at fundamental frequency L 1 , does not exceed 0.1 TECU, which permits this method to be used in strong disturbance conditions when phase slips at auxiliary frequency L 2 are observed.
Appears in Collections:Annals of Geophysics

Files in This Item:

File SizeFormatVisibility
055_071 Afraimovich2.pdf196.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA