Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6725
DC FieldValueLanguage
dc.contributor.authorallPischiutta, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCultrera, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCaserta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLuzi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-01-18T09:38:03Zen
dc.date.available2011-01-18T09:38:03Zen
dc.date.issued2010-06-10en
dc.identifier.urihttp://hdl.handle.net/2122/6725en
dc.description.abstractDuring the MW 5.7 and 6.0 Umbria–Marche earthquakes of 1997 September 26, the historical centre of Nocera Umbra suffered MCS intensity VII–VIII. The zone is located on the top of a hill, a condition potentially favourable to ground motion amplification. However, also vulnerability is higher on the hill because of the ancient age of buildings. A temporary array of eight seismological stations was installed across the hill to quantify the amplification effect due to topography.Waveforms of 14 aftershocks (2.6<ML <4.1) are selected for the analysis. During each earthquake the largest amplitudes are observed on the hilltop, spectral ratios are computed using rotated horizontal components to search for directional effects. Amplifications are found in two separate frequency bands: one in the range 2–4 Hz, where the increase of amplitude is moderate (never exceeding a factor of 4) and the polarization is transversal to the hill major axis; the second above 10 Hz, where amplifications are larger and reach values as high as 25 Hz. High-frequency polarization varies for different sites and frequencies suggesting that smaller-scale complexities control the high frequency response. Synthetic seismograms of 2-D models confirm the occurrence of amplification, although not all details are fit by numerical simulations and the agreement between observations and models is significant only in terms of the fundamental resonance frequency, around 3 Hz. In the models, amplifications are much smaller than the observed ones. We conclude that topography could have been responsible for a small increase of damage in the hill zone but the most significant role on damage was played by the locally higher vulnerability.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/183(2010)en
dc.subjectEarthquake ground motionen
dc.subjectSite effectsen
dc.titleTopographic effects on the hill of Nocera Umbra, central Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber977-987en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1111/j.1365-246X.2010.04654.xen
dc.relation.referencesAmato, A., Azzara, R., Chiarabba, C., Cimini, G.B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D. & Ripepe, M., 1998. The 1997 Umbria-Marche, Italy, Earthquake Sequence: A First Look at the Main Shocks and Aftershocks, Geophys. Res. Lett. 25, 2861-2864. Bard, P.-Y. & Tucker, B. E., 1985. Underground and ridge site effects: a comparison of observation and theory, Bull. Seismol. Soc. Am., 75, 905-922. Bard, P.-Y. & Bouchon, M., 1985. The two-dimensional resonance of sediment-filled valleys, Bull. Seismol. Soc. Am., 75, 519-541. Bouchon, M., 1973. Effect of topography on surface motion, Bull. Seismol. Soc. Am., 63, 615-632. Bouchon, M. & Barker, J.S., 1996. Seismic response of a hill: The example of Tarzana, California, Bull. Seismol. Soc. Am., 86, 66-72. Calamita, F., Cello, G., Deiana, G. & Paltrinieri, W, 1994. Structural styles, chronology rates of deformation, and time space relationships in the Umbria-Marche thrust system (central Appeninnes, Italy), Tectonics, 13, 873-881. Caserta, A., 1998. A time domain finite-difference technique for oblique incidence of antiplane waves in heterogeneous dissipative media, Annals of Geophysics, 41, 617– 631. Caserta, A., Bellucci, F., Cultrera, G., Donati, S., Marra, F., Mele, G., Palombo, B. & Rovelli, A., 2000. Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence, J. Seismol, 4, 555-565. Çelebi, M., 1987. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake, Bull. Seismol. Soc. Am., 77, 1147-1167. Chavez-Garcia, F.J., Sanchez, L.R. & Hatzfeld, D., 1996. Topographic site effect and HVSR. A comparison between observation and theory, Bull. Seismol. Soc. Am., 5, 1725-1743. Cultrera, G., Rovelli, A., Mele, G., Azzara, R.., Caserta, A. & Marra, F., 2003. Azimuth dependent amplification of weak and strong round motions within a fault zone (Nocera Umbra, Central Italy), J. Geophys. Res., 108 (B3), 2156, doi:10.1029/2002JB001929. Deschamps, A., Courboulex, F., Gaffet, S., Lomax, A., Virieux, J., Amato, A., Azzara, A., Castello, B., Chiarabba, C., Cimini, G.B., Cocco, M., Di Bona, M., Margheriti, L., Mele, F., Selvaggi, G., Chiaraluce, L., Piccinini, D. & Ripepe M., 2000. Spatio-temporal distribution of seismic activity during the Umbria-Marche crisis, 1997, J. Seismol., 4, 377-386. Donati, S., Marra, F. & Rovelli, A., 2001. Damage and ground shaking in the town of Nocera Umbra during Umbria-Marche, central Italy, earthquakes: The special effect of a fault zone, Bull. Seismol. Soc. Am., 91, 511-519. Gallipoli M.R., Mucciarelli M., & Vona M., 2009. Empirical estimate of fundamental frequencies and relevant damping for Italian building. Earthquake Engng Struct. Dyn., 38, 973–988. Geli, L., Bard, P.-Y. & Jullien, B., 1988. The effect of topography on earthquakes ground motion: a review and new results, Bull. Seismol. Soc. Am., 78, 42-63. GNDT, 1999. Nocera Umbra: elementi di microzonazione sismica. GNDT – SSN Report, http://daphne.irrs.mi.cnr.it/seism/Ital/homeum.html. Jurkevics, A., 1988. Polarization analysis of three component array data, Bull. Seismol. Soc. Am., 78, 1725-1743. Kawase, H. & Aki, K., 1990. Topography effect at the critical SV-wave incidence: possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987, Bull. Seismol. Soc. Am., 80, 1-22. La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G. B. & Del Pezzo, E., 2004. Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. Seismol. Soc. Am., 94(5), 1850–1867, doi:10.1785/012003238. Lanucara, P., Busico, M.P., Caserta, A. & Firmani, B., 2004. Numerical modelling of the ground motion: a parallel approach for finite element methods, Proceedings of the 7th Conference on Applied and Industrial Mathematics in Italy, Venice, Italy, 487-495. Le Brun, B., Hatzfeld, D. & Bard, P-Y., 1999. Experimental study of the ground-motion on a large scale topographic hill a Kitherion (Greece), J. Seismol, 3, 1-15. Marra, F., Azzara, R., Bellucci, F., Caserta, A., Cultrera, G., Mele, G., Palombo, B., Rovelli, A. & Boschi, E., 2000. Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy), J. Seismol, 4, 543-554. Michelini, A., Spallarossa, D., Cattaneo, M., Govoni, A. & Montanari, A., 2000. The 1997 Umbria-Marche (Italy) earthquake sequence: tomographic images obtained from data of the GNDT-SSN temporary network, J. Seismol, 4, 415-433. Moczo, P., Rovelli, A., Labák, P. & Malagnini, L., 1995. Seismic response of the geologic structure underlying the Roman Colosseum and a 2-D resonance of a sediment valley, Annals of Geophysics, 38, 939-956. Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface, Quarterly Rept. RTRI, Jpn., 30, 25-33. Paolucci, R., 2002. Amplification of earthquake round motion by steep topographic irregularities, Earthquake Engng Struct. Dyn., 31, 1831-1853. Pedersen, H.A., Le Brun, B., Hatzfeld, D., Campillo, M. & Bard, P-Y., 1994. Ground-motion amplitude across ridges, Bull. Seismol. Soc. Am., 84, 1786-1800. Pedersen, H.A., Sánchez-Sesma, F.J. & Campillo, M., 1994. Three-dimensional scattering by two-dimensional topographies, Bull. Seismol. Soc. Am., 84, 1169-1183. Ponti, D. J., & Wells, R.E., 1991. Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake, Bull. Seismol. Soc. Am., 81, 1480-1510. Rigano, R., Cara, F., Lombardo, G. & Rovelli, A., 2008. Evidence of ground motion polarization on fault zones of Mount Etna volcano, J. Geophys. Res., doi:10.1029/2007JB005574. Rovelli, A., Caserta, A., Marra, F. & Ruggiero, V., 2002. Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. Seismol. Soc. Am., 92, 2217-2232. Santoni D., Giuffrida, C., Ruggiero, V., Caserta, A. & Lanucara, P., 2004. Web user-friendly interface to produce input data for numerical simulations of seismic wave propagation, EGS-AGU-EUG Joint Assembly, Nice, France (poster). Sánchez-Sesma, F. J., 1990. Elementary solutions for response of a wedge-shaped medium to incident SH and SV waves, Bull. Seismol. Soc. Am., 80, 737-742. Spudich, P., Hellweg, M. & Lee, H.K., 1996. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: Implications for mainshocks motions, Bull. Seismol. Soc. Am., 86, 193-208. Tirelli, V., 2002. Studio strutturale delle zone di faglia presso Nocera Umbra (PG) e loro influenza sugli effetti di sito dell’evento sismico Settembre 1997, MD thesis, Department of Geology, University Roma3, Rome, Italy, (in Italian).en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPischiutta, M.en
dc.contributor.authorCultrera, G.en
dc.contributor.authorCaserta, A.en
dc.contributor.authorLuzi, L.en
dc.contributor.authorRovelli, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.orcid0000-0002-3335-5655-
crisitem.author.orcid0000-0002-3469-9644-
crisitem.author.orcid0000-0003-4312-580X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
fulltext.pdf1.58 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

43
checked on Feb 10, 2021

Page view(s)

331
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric