Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Mazzarini, F.*
Isola, I.*
Ruggieri, G.*
Boschi, C.*
Title: Fluid circulation in the upper brittle crust: Thickness distribution, hydraulic transmissivity fluid inclusion and isotopic data of veins hosted in the Oligocene sandstones of the Macigno Formation in southern Tuscany, Italy
Title of journal: Tectonophysics
Series/Report no.: 1-2/493(2010)
Publisher: Elsevier
Issue Date: 8-Oct-2010
DOI: 10.1016/j.tecto.2010.07.012
Keywords: Vein systems
Fluid type
Fluid pressure
Fluid inclusions
Upper crust
Abstract: We present structural analysis, fluid inclusion data on calcite and quartz, and isotopic composition of calcite forming veins occurring in the upper crustal level and hosted in Oligocene sandstone in southern Tuscany (Italy). The veins have been analysed in two sites few kilometres apart, along well-exposed coastal cliffs and in an abandoned quarry. These two sites were at a different depths at the time of the vein formation with a Δh ~ 100 m. Structural analysis of veins provided estimations of stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3) at the time of vein formation. The estimated ΔPo is in the range of 42–103 MPa, Φ = 0.24 and R′ = 0.45, indicating that fluid pressure was higher than the intermediate principal stress at the time of veins formation. The veins' thickness (t) shows a clear power-law distribution (D = 1.8835 and R2 = 0.9762) in the lowermost site (coast) and a negative exponential distribution (a = 0.6943 and R2 = 0.9921) in the uppermost site (abandoned quarry). The vein thickness distributions have been used to compute the average transmissivity of the veins in the two sites. The computed transmissivity for the vein formation is ~ 10−4 m2 s−1, with higher values attained by the veins having negative exponential thickness distribution. Fluid inclusions studies highlighted that in both calcite and quartz, water-rich inclusions, with salinities of 2.2–4.3 wt.% NaCl equiv., and methane-rich inclusions were coevally trapped during fluid un-mixing processes. Thermogenic origin, from thermal maturation of organic matter present in the Macigno Formation, is proposed for methane. Whereas, the similarity between the δ18O (from 14.9 to 17.4‰) and δ13C (from −0.4 to −2.4‰) data of representative calcite veins and the isotopic composition (δ18O: 16.1‰, δ13C: −1.0‰) of host-rock carbonate component, indicates that the fluid which formed calcite was in isotopic equilibrium with the carbonates present in the Oligocene sandstones. The calculated pressure–temperature conditions during the formation of these inclusions are prevalently within the 40–145 MPa and 160–260 °C ranges. The highest pressure values approximate the lithostatic pressure (~ 120 MPa) computed from geological data and are coherent with a geothermal gradient ranges of 35–45 °C/km. Whereas, the lower pressure values are comparable with hydrostatic pressure conditions. The pressure range indicated by fluid inclusion data is also comparable with the fluid pressure estimated from structural analysis. The considerable pressure range can be related to pressure cycling between lithostatic and hydrostatic conditions as a consequence of fault-valve actions and rock fracturing with subsequent pressure recover due to self-sealing process.
Appears in Collections:04.04.09. Structural geology
04.04.12. Fluid Geochemistry
04.07.07. Tectonics
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
Tectonoph_Mazzarini_etal_2010[2].pdf3.79 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA