Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6656
DC FieldValueLanguage
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPetrone, P.; Museo di Antropologia, Centro Musei delle Scienze Naturali, Universita` degli Studi di Napoli Federico II, Naples, Italy.en
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGuarino, F. M.; Dipartimento di Biologia Strutturale e Funzionale, Universita` degli Studi di Napoli Federico II, Naples, Italyen
dc.date.accessioned2011-01-14T08:23:16Zen
dc.date.available2011-01-14T08:23:16Zen
dc.date.issued2010-06en
dc.identifier.urihttp://hdl.handle.net/2122/6656en
dc.description.abstractBackground: The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings: Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250uC hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance: This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.en
dc.language.isoEnglishen
dc.publisher.namePublic Library Scienceen
dc.relation.ispartofPLOS ONEen
dc.relation.ispartofseries6/5(2010)en
dc.subjectLethal Thermal Impacten
dc.subjectPyroclastic Surgesen
dc.subjectPompeiien
dc.titleLethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeiien
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumbere11127en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.subject.INGV05. General::05.08. Risk::05.08.01. Environmental risken
dc.identifier.doi10.1371/journal.pone.0011127en
dc.relation.references1. Baxter PJ (1990) Medical effects of volcanic eruptions, I. Main causes of death and Injury. Bull Volcanol 52: 532–544. 2. Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan MF (2006) The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. Proc Natl Acad Sci USA 103: 4366– 4370. 3. Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in A.D. 79. Nat Geogr Res 1: 332–387. 4. Luongo G, Perrotta A, Scarpati C, De Carolis E, Patricelli G, et al. (2003) Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties. J Volcanol Geotherm Res 126: 169–200. 5. McEwen AS, Malin MC (1989) Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars and blast. J Volcanol Geotherm Res 37: 205–231. 6. Rossano S, Mastrolorenzo G, De Natale G, Pingue F (1996) Computer simulation of pyroclastic flow movement: an inverse approach. Geophys Res Letters 23: 3779–3782. 7. Middleton GV, Southard JB (1978) Mechanism of Sediment Movement. Soc Econ Paleontol Mineral, Short Course 3. 254 p. 8. Perla RI (1980) Avalanche release, motion and impact. In: Colbeck SC, ed. Dynamics of snow and ice avalanches. New York: Academic Press. pp 397–462. 9. Guarino FM, Angelini F, Vollono C, Orefice C (2006) Bone preservation in human remains from the Terme del Sarno at Pompeii using light microscopy and scanning electron microscopy. J Archaeol Sci 33: 513–520. 10. Munsell Soil Colour Charts (1954) Baltimore Munsell Color Company Inc: USA (Md). 11. Rossano S, Mastrolorenzo G, De Natale G (1998) Computer simulations of pyroclastic flows on Somma-Vesuvius volcano. J Volcanol Geotherm Res 82: 113–137. 12. De Natale G, Troise C, Pingue F, Mastrolorenzo G, Pappalardo L (2006) The Somma-Vesuvius volcano (Southern Italy): structure, dynamics and hazard evaluation. Earth Science Reviews 74: 73–111. 13. Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49: 616–630. 14. De Carolis E, Patricelli G, Ciarallo AM (1998) The human bodies found in the urban area of Pompeii (Translated from Italian). Rivista di Studi Pompeiani 9: 75–123. 15. Maiuri A (1961) Last moments of the Pompeians. Natl Geogr 120: 651–669. 16. Mastrolorenzo G, Petrone PP, Pagano M, Incoronato A, Baxter PJ, et al. (2001) Herculaneum victims of Vesuvius in ad 79. Nature 410: 769–770. 17. Knu¨ sel CJ, Janaway RC, King SE (2007) Death, decay and ritual reconstruction: archaeological evidence of cadaveric spasm. Oxford J Archaeol 2: 121–128. 18. Camps FE, Robinson AE, Lucas BGB (1976) Gradwohl’s Legal Medicine. Bristol: John Wright & Sons Ltd. 3rd edition. 85 p. 19. Baxter PJ, Neri A, Todesco M (1998) Physical modeling and human survival in pyroclastic flows. Natural Hazards 17: 163–176. 20. Shipman P, Foster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. J Archaeol Sci 11: 307–325. 21. Hermann NP, Bennet JL (1999) The Differentiation of traumatic and heatrelated fractures in burned bone. J Forensic Sci 44: 461–469. 22. Holden JL, Phakey PP, Clement JG (1995) Scanning electron microscope observations of heat-treated human bone. Forensic Sci Int 74: 17–28. 23. Esposti Ongaro T, Neri A, Todesco M, Macedonio G (2002) Pyroclastic flow hazard assessment at Vesuvius by using numerical modelling. 2. Analysis of flow variables. Bull Volcanol 64: 178–191. 24. Stefani G (2006) La Casa del Menandro (I, 10). In Guzzo PG, ed. Argenti a Pompeii. Milano: Mondatori Electa. pp 191–195. 25. Paparazzo E (2005) The Elder Pliny, Posidonius and surfaces. British J Phil Sci 56: 363–376. 26. Hatcher PG (2002) A Systematic Survey, Wood associated with the A.D. 79 eruption: Its chemical characterization by solid state 13C as a guide to the degree of carbonization. In: Feemster Jashemski WM, Meyer FG, eds. The Natural History of Pompeii. Cambridge: Cambridge University Press. pp 217–224. 27. Spence R, Kelman I, Brown A, Toyos G, Purser D, et al. (2007) Residential building and occupant vulnerability to pyroclastic density currents in explosive eruptions. Nat Hazards Earth Syst Sci 7: 219–230.en
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.authorPetrone, P.en
dc.contributor.authorPappalardo, L.en
dc.contributor.authorGuarino, F. M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentMuseo di Antropologia, Centro Musei delle Scienze Naturali, Universita` degli Studi di Napoli Federico II, Naples, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Biologia Strutturale e Funzionale, Universita` degli Studi di Napoli Federico II, Naples, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptMuseo di Antropologia, Centro Musei delle Scienze Naturali, Universita` degli Studi di Napoli Federico II,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di Biologia Strutturale e Funzionale, Universita` degli Studi di Napoli Federico II, Naples, Italy-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
plospappalardo.pdf1.44 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 7, 2021

Page view(s)

326
checked on Apr 24, 2024

Download(s) 50

113
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric