Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item:

Authors: Pappalardo, L.*
Mastrolorenzo, G.*
Title: Short residence times for alkaline Vesuvius magmas in a multi-depth supply system: Evidence from geochemical and textural studies
Title of journal: Earth and Planetary Science Letters
Series/Report no.: /296 (2010)
Publisher: Elsevier
Issue Date: 2010
DOI: 10.1016/j.epsl.2010.05.010
Keywords: residence time
Abstract: It is crucial to understand magma chamber chemico-physical conditions and residence times for high-risk volcanoes because these factors control the occurrence and size of future eruptions. In order to define magmatic pressure–temperature conditions and residence times at the Somma–Vesuvius volcano, we studied the geochemistry and texture of selected past eruptions that are representative of the entire volcanic history. Our petrological model indicates a multi-depth magma chamber composed of a deeper tephritic (350– 400 Mpa) magma layer, which fed Strombolian and effusive eruptions during open-conduit activity, and an upper (200–250 Mpa) phonolitic level, which supplied the high explosive events that followed closedconduit repose time. This upper reservoir matches the inferred transition between sedimentary sequences and metamorphic basement. At this level, the presence of a structural and lithological discontinuity favors magma storage during closed-conduit periods. The prevalent differentiation process was fractional crystallization during the magma cooling associated with upward migration of less dense, evolved liquids. Our results indicate that major steam exolution occurred during the late crystallization stage of phonolites, which accounts for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover, our phenocryst CSD data reveal the rapid crystallization and differentiation (decades to centuries) of alkaline Somma–Vesuvius magmas. This implies that the 400 km2 partial melting zone detected by tomography studies at 8–10 km depth beneath Vesuvius should consist of differentiated magma that is already capable of generating a large-scale (plinian) explosive event if renewed activity develops out of the present closed-conduit state. Additionally, because our microlite CSD data indicate rapid magma migration from the chamber toward the surface, precursory activity could appear only short time before a major eruption.
Appears in Collections:04.04.07. Rock geochemistry
04.01.04. Mineral physics and properties of rocks
04.04.10. Stratigraphy
04.04.05. Mineralogy and petrology
Papers Published / Papers in press

Files in This Item:

File SizeFormatVisibility
epslpappalardocomplete.pdf5.58 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Share this record




Stumble it!



Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA