Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/663
DC FieldValueLanguage
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPapale, P.; Istituto Nazionale di Geofisica e Vulcanologica, Centro di Modellistica Fisica e Pericolosita` dei Processi Vulcanicien
dc.date.accessioned2006-02-10T08:09:49Zen
dc.date.available2006-02-10T08:09:49Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/663en
dc.description.abstractThe equilibrium between a 4-component H2O–CO2–SO2–H2S gas phase and a 13-component silicate liquid made of 10 major oxides plus dissolved H2O, CO2, and S, is investigated by means of calculations involving homogeneous reactions in the gas phase and heterogeneous gas–liquid saturation modeling based on classical Gibbs thermodynamics and Toop–Samis polymeric approach. Sulfur is assumed to be present in two different oxidation states in the gas (sulfur dioxide and hydrogen sulfide) and liquid (sulfide and sulfate ions) phase, implying a dependence of the equilibrium conditions on the redox state of the system. Sulfur-bearing solid phases and Fe–O–S immiscible liquid are not accounted for in the modeling. The thermodynamic model is an extension of the one presented in Moretti et al. [Moretti R., Papale P. and Ottonello, G., 2003. A model for the saturation of C–H–O–S fluids in silicate melts. In: Oppenheimer C., Pyle D.M., Barclay J. (eds.) Volcanic Degassing, Geol. Soc. London Spec. Publ., 213, 81–101.] to account for iron speciation at high pressure and dissolved water contents. The consequences on the equilibrium conditions of different assumptions concerning the effective redox buffer in magma are examined through calculations made on two different liquids of shoshonitic and rhyolitic composition, determining the equilibrium conditions on the basis of (i) constant ferric to ferrous mass ratio, (ii) constant hydrogen sulfide to sulfur dioxide fugacity ratio, and (iii) constant oxygen fugacity relative to a solid–gas buffer (DNNOF0.5). Following Giggenbach [Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa R., Tilling R.I. (eds.) Monitoring and Mitigation of Volcano Hazards, Springer-Berlin, 202–226.], the first two buffers are expected to be effective in basaltic and rhyolitic magmas, respectively, according to the most abundant reservoir of redox couples represented by iron in basalts, and sulfur in rhyolite. The model results show strongly nonlinear dependence of the equilibrium compositions in the gas and liquid phases, as well as of the oxidation state of the system, on the assumed redox buffer. Furthermore, for each assumed redox buffer, the pressure dependence of phase composition and oxidation state of the system also shows strongly nonlinear trends. The largest compositional differences are shown by sulfur species; however, the concentrations of water and carbon dioxide in the two phases at equilibrium also show nonnegligible dependence on the redox conditions. For each assumed redox buffer, sulfur dioxide in the gas phase, and sulfate ions in the liquid phase, are found to be present in appreciable quantities or represent the dominating sulfur species even at the largest employed pressures approaching 500 MPa. The more reliable redox buffers represented by constant ferric to ferrous mass ratio for shoshonite, and constant hydrogen sulfide to sulfur dioxide fugacity ratio for rhyolite, show that oxygen fugacity paths during magma depressurization strongly deviate from those parallel to NNO. Therefore, the characterization of the oxidation state in depressurizing magmas on the basis of deviations from solid buffers (usually NNO or QFM) may not be appropriate.en
dc.format.extent483 bytesen
dc.format.extent1549881 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V. All rights reserved.en
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries213en
dc.subjectSilicate meltsen
dc.subjectRedox bufferen
dc.subjectSaturationen
dc.subjectVolatile exsolutionen
dc.titleOn the oxidation state and volatile behavior in multicomponent gas–melt equilibriaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber265– 280en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.identifier.doi10.1016/j.chemgeo.2004.08.048en
dc.relation.referencesAllard, P., Carbonnelle, J., Me´trich, N., Loyer, H., Zettwoog, P., 1994. Sulphur output and magma degassing budget of Stromboli volcano. Nature 368, 326– 330. Baker, L.L., Rutherford, M.J., 1996. The effect of dissolved water on the oxidation state of silicic melts. Geochim. Cosmochim. Acta 60, 2179–2187. Belonoshko, A.B., Shi, P., Saxena, S.K., 1992. SUPERFLUID: a FORTRAN 77 program for calculation of Gibbs free energy and volume of C–H–O–N–S–Ar mixtures. Comp. Geosci. 18, 1267– 1269. Burton, M., Allard, P., Mure´, F., Oppheneimer, C., 2003. FTIR remote sensing of fractional magma degassing at Mount Etna, Sicily. In: Oppenheimer, C., Pyle, D.M., Barclay, J. (Eds.), Volcanic Degassing, Spec. Publ.-Geol. Soc. London, vol. 213, pp. 281– 293. Carmichael, I.S.E., Ghiorso, M.S., 1986. Oxidation–reduction relations in basic magma: a case of homogeneous equilibria. Earth Planet. Sci. Lett. 78, 200– 210. Carmichael, I.S.E., Ghiorso, M.S., 1990. The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. In: Nicholls, J., Russell, J.K. (Eds.), Modern Methods of Igneous Petrology: Understanding Magmatic Processes, Rev. Mineral., vol. 24, pp. 191–212. Carroll, M.R., Holloway, J.R., 1994. Volatiles in magmas. Rev. Mineralogy, vol. 30. Mineral. Soc. America. 517 pp. Carrol, M.R., Rutherford, M.J., 1985. Sulfide and sulfate saturation in hydrous silicate melts. J. Geophys. Res. 90, 601–612. Carroll, M.R., Webster, J.D., 1994. Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas, Rev. Mineral., vol. 30, pp. 231– 279. Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673– 2687. Fincham, C.J.B., Richardson, F.D., 1954. The behaviour of sulphur in silicate and aluminate melts. Proc. Roy. Soc. London A223, 40– 62. Fraser, D.G., 1975. Activities of trace elements in silicate melts. Geochim. Cosmochim. Acta 39, 1525– 1530. Fraser, D.G., 2003. Acid base properties, structons and the thermodynamic properties of silicate melts. Geochim. Cosmochim. Acta 67/18S, A103 (abs). Gaillard, F., Scaillet, B., Pichavant, M., Be´ny, J.-M., 2001. The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chem. Geol. 174, 255–273. Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island New Zealand. Appl. Geochem. 2 (20), 143– 161. Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa, R., Tilling, R.I. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer-Berlin, pp. 202–226. Ghiorso, M.S., Carmichael, I.S.E., 1985. Chemical mass transfer in magmatic processes: II. Applications in equilibrium crystallization, fractionation and assimilation. Contrib. Mineral. Petrol. 90, 121– 141. Hess, P.C., 1971. Polymer models of silicate melts. Geochim. Cosmochim. Acta 35, 289–306. Hess, K.-U., Dingwell, D.B., 1996. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 120– 128. Holloway, J.R., Blank, J.G., 1994. Application of experimental results to C–O–H species in natural melts. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas, Rev. Min., vol. 30, pp. 188–230. Kohn, S.C., Dupree, R., Smith, M.E., 1989. A multinuclear magnetic resonance study of the structure of the structure of hydrous albite glass. Geochim. Cosmochim. Acta 53, 2925–2935. Kress, W.C., Carmichael, I.S.E., 1988. Stoichiometry of the iron oxidation reaction in silicate melts. Am. Mineral. 73, 1267–1274. Lattard, D., Partzsch, G.M., 2001. Magmatic crystallization experiments at 1 bar in systems closed to oxygen: a new/old experimental approach. Eur. J. Mineral. 13, 467– 478. Me´trich, N., Rutherford, M.J., 1998. Low-pressure crystallization paths of H2O-saturated basaltic–hawaiitic melts from mt. Etna: implications for open-system degassing of basaltic volcanoes. Geochim. Cosmochim. Acta 62, 1195– 1205. Middlemost, E.A.K., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chem. Geol. 77, 19–26. Moore, G., Righter, K., Carmichael, I.S.E., 1995. The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib. Mineral. Petrol. 120, 170– 179. Moretti, R., 2004. Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Ann. Geophys. (in press). Moretti, R., Ottonello, G., 2003a. A polymeric approach to the sulfide capacity of silicate slags and melts. Metall. Mater. Trans., B 34B, 399– 410. Moretti, R., Ottonello, G., 2003b. Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity based approach. J. Non-Cryst. Solids 323, 111 – 119. Moretti, R., Ottonello, G., 2004. Solubility and speciation of sulfur in silicate melts: the CTSFG model. Geochim. Cosmochim. Acta (in press).Moretti, R., Papale, P., Ottonello, G., 2003. A model for the saturation of C–H–O–S fluids in silicate melts. In: Oppenheimer, C., Pyle, D.M., Barclay, J. (Eds.), Volcanic Degassing, Spec. Publication-Geol. Soc. London, vol. 213, pp. 81–101. Oppenheimer, C., Pyle, D., Barclay, J., 2003. Volcanic Degassing, Spec. Publ.-Geol. Soc., vol. 213. The Geological Society. 420 pp. Ottonello, G., Moretti, G., Marini, L., Vetuschi Zuccolini, M., 2001. On the oxidation state of iron in silicate melts and glasses: a thermochemical model. Chem. Geol. 174, 157– 179. Papale, P., 1997. Modeling of the solubility of one component H2O or CO2 fluid in silicate liquid. Contrib. Mineral. Petrol. 112, 490– 500. Papale, P., 1999. Modeling of the solubility of a two-component H2O+CO2 fluid in silicate liquids. Am. Mineral. 84, 477– 492. Paul, A., Douglas, R.W., 1966. Mutual interactions of different redox pairs in glass. Phys. Chem. Glasses 7, 1 – 13. Reid, R.C., Prausnitz, J.M., Poiling, B.E., 1986. The Properties of Gases and Liquids. McGraw Hill International Editions. Scaillet, B., Pichavant, M., 2003. Experimental constraints on volatile abundances in arc magmas and their implications for degassing processes. In: Oppenheimer, C., Pyle, D.M., Barclay, J. (Eds.), Volcanic Degassing, Spec. Publ.-Geol. Soc. London, vol. 213, pp. 23– 52. Stebbins, J.F., McMillan, P.F., Dingwell, D.B., 1995. Structure, Dynamics and Properties of Silicate Melts, Rev. Mineralogy, vol. 32. Mineral. Soc. America. 616 pp. Symonds, R.B., Rose, W.I., Bluth, G.J.S., Gerlach, T.M., 1994. Volcanic gas studies: methods results, and applications. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas, Rev. Mineral., vol. 30, pp. 1 – 60. Temkin, M., 1945. Mixtures of fused salts as ionic solutions. Acta Phys. Chim. URSS 20, 411– 420. Toop, G.W., Samis, C.S., 1962a. Some new ionic concepts of silicate slags. Can. Metall. Q. 1, 129– 152. Toop, G.W., Samis, C.S., 1962b. Activities of ions in silicate melts. Trans. Metall. Soc. AIME 224, 878– 887. Xue, X., Kanzaki, M., 2003. The dissolution mechanism of water in alkaline earth silicate and aluminosilicate melts: one view from 1H MAS NMR. Geochim. Cosmochim. Acta 67 (18/S), A543 (abs). Wilke, M., Behrens, H., Burkhard, D.M.J., Rossano, S., 2002. The oxidation state of iron in silicic melt at 500 MPa water pressure. Chem. Geol. 189, 55– 67.en
dc.description.fulltextpartially_openen
dc.contributor.authorMoretti, R.en
dc.contributor.authorPapale, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologica, Centro di Modellistica Fisica e Pericolosita` dei Processi Vulcanicien
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.author.orcid0000-0002-5207-2124-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Moretti2.pdf1.51 MBAdobe PDF
chemicalgeology.htm483 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

74
checked on Feb 10, 2021

Page view(s) 50

210
checked on Apr 20, 2024

Download(s) 50

139
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric