Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6595
DC FieldValueLanguage
dc.contributor.authorallPaternoster, M.; Dipartimento di Chimica, Universitá degli Studi della Basilicata, Campus Macchia Romana, I-85100 Potenza, Italyen
dc.contributor.authorallParisi, S.; Dipartimento di Scienze Geologiche, Universitá degli Studi della Basilicata, Campus Macchia Romana, I-85100 Potenza, Italyen
dc.contributor.authorallCaracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallFavara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMongelli, G.; Dipartimento di Chimica, Universitá degli Studi della Basilicata, Campus Macchia Romana, I-85100 Potenza, Italyen
dc.date.accessioned2011-01-13T07:48:00Zen
dc.date.available2011-01-13T07:48:00Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6595en
dc.description.abstractWe report the chemical composition of groundwaters—including the first data on the sulfur isotopic composition of dissolved sulfate—from the volcanic aquifers of Mt. Vulture, one of the most important hydrological basins of southern Italy. A total of 27 water samples taken at different altitudes among drilled wells and springs were collected. The majority of groundwaters have a bicarbonate alkaline and bicarbonate alkaline-earth composition. High-salinity waters are sulfatebicarbonate alkaline in composition. The water-rock interaction process is mainly affected from uprising of CO2-rich gases which cause an increase of the water acidity promoting basalt weathering with an enrichment in certain chemical species (i.e., Na+, Ca2+, SO4 2–) and a high total carbon content. The δ34S values of dissolved sulfate ranging from +4‰ to +8.6‰ can be explained by leaching of volcanites. Higher δ34S values (from 9.6‰ to 10.4‰) detected in a few water springs can be ascribed either to the interaction with the pyroclastic layer rich in feldspathoids, such as haüyna, that have sulfur isotopic compositions up to +10.6‰ or animal manure contamination inducing localized bacterial sulfate reduction with an increase in the δ34S of sulfate. Taking into account that Upper Triassic evaporite deposits have higher δ34S values (from +13.5‰ to +17.4‰,) than those measured in all water samples the dissolution of these deposits could be excluded.en
dc.language.isoEnglishen
dc.publisher.nameThe Geochemical Society of Japanen
dc.relation.ispartofGeochemical Journalen
dc.relation.ispartofseries/44(2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5188en
dc.subjectMt. Vulture volcanoen
dc.subjectwater-rock interactionen
dc.subjectsilicate weatheringen
dc.subjecthydrogeochemistryen
dc.subjectsulfur isotope compositionen
dc.titleGroundwaters of Mt. Vulture volcano, southern Italy: Chemistry and sulfur isotope composition of dissolved sulfateen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber125-135en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamicsen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.relation.referencesAiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Treuil, M. and Valenza, M. (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 64, 1827–1841. Barbieri, M. and Morotti, M. (2003) Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy. Appl. Geochem. 18, 117–125. Beccaluva, L., Coltorti, M., Di Girolamo, P., Melluso, L., Dilani, L., Morra, V. and Siena, E. (2002) Petrogenesis and evolution of Mt. Vulture alkaline volcanism (southern Italy). Mineral. Petrol. 74, 277–297. Bindi, L., Cellai, D., Melluso, L., Conticelli, S., Morra, V. and Menchetti, S. (1999) Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture, Italy. Lithos 46, 259–274. Boenzi, F., La Volpe, L. and Rapisardi, L. (1987) Evoluzione geomorfologica del complesso vulcanico del M. Vulture (Basilicata). Boll. Soc. Geol. It. 106, 673–682. Bol, R., Eriksen, J., Smith, P., Garnett, M. K., Coleman, K. and Christensen, B. T. (2005) The natural abundance of 13C, 15N, 34S and 14C in archived (1923–2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Commun. Mass Spectrom. 19, 3216–3226. Bottrell, S., Tellam, J., Bartlett, R. and Hughes, A. (2008) Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK. Appl. Geochem. 23, 2382–2394. Bottrell, S. H., Webber, N., Gunn J. and Worthington, S. R. H. (2000) The geochemistry of sulphur in a mixed allogenicautogenic karst catchment, Castleton, Derbyshire, UK. Earth Surf. Process. Landforms 25, 155–165. Buettner, A., Principe, C., Villa, I. M. and Bocchini, D. (2006) Geocronologia 39Ar–40Ar del Monte Vulture. La Geologia del Monte Vulture (a cura di Claudia Principe), 73–86, Grafiche Finiguerra. Caracausi, A., Nuccio, P. M., Favara, R., Nicolosi, M. and Paternoster, M. (2009) Gas hazard assessment at the Monticcio crater Lakes of Mt. Vulture, a volcano in Southern Italy. Terra Nova 21, 83–87. Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P. and Rees, C. E. (1986) Sulfur and oxygen isotopes of sulfur in precipitation and lake water, Quebec, Canada. Appl. Geochem. 1, 601–606. Celico, P. and Summa, G. (2004) Idrogeologia dell’area del Vulture (Basilicata). Boll. Soc. Geol. It. 123, 343–356. Claypool, G. E., Holser, W. T., Kaplan, Y. R., Sakai, H. and Zak, I. (1980) The age of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28, 199–260. Cortecci, G., Reyes, E., Berti, G. and Casati, P. (1981) Sulfur and oxygen isotopes in Italian marine sulfate of Permian and Triassic ages. Chem. Geol. 34, 65–79. Cortecci, G., Dinelli, E., Bencini, A., Adorni-Braccesi, A. and La Ruffa, G. (2002) Natural and anthropogenic SO4 2– sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl. Geochem. 17, 79–92. De Astis, G., Kempton, P. D., Peccerillo, A. and Wu, T. W. (2006) Trace element and isotopic variation from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contrib. Mineral. Petrol. 151, 331–351. De Fino, M., La Volpe, L. and Piccarreta, G. (1982) Magma evolution at Mount Vulture (southern Italy). Bull. Volcanol. 45(2), 115–126. De Fino, M., La Volpe, L., Peccerillo, A., Piccarreta, G. and Poli, G. (1986) Petrogenesis of Monte Vulture volcano (Italy): interferences from mineral chemistry, major and trace element data. Contrib. Mineral. Petrol. 92, 135–145. Di Muro, A., Bonaccorsi, E. and Principe, C. (2004) Complex color and chemical zoning of sodalite-group phases in a haüynophyre lava from the Vulture (Italy): a windows on a small-volume magma reservoir. Mineral. Mag. 68, 591–614. D’Orazio, M., Innocenti, F., Tonarini, S. and Doglioni, C. (2007)Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos 98, 313– 334. D’Orazio, M., Innocenti, F., Tonarini, S. and Doglioni, C. (2008) Reply to the discussion of: “Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy)” by M Orazio, F. Innocenti, S. Tonarini and C. Doglioni (Lithos 98, 313–334) by F. Stoppa, C. Principe and P. Giannandrea. Lithos 103, 557–561. Eriksson, P. G., Reczko, B. F., Corner, B. and Jenkins, S. L. (1996) The Kanye axis, Kaapvaal craton, southern Africa: a postulated Archaean crustal architectural element inferred from three-dimensional basin modeling of the lower Transvaal Supergroup. J. S. Afr. Earth Sci. 22, 223–233. Faure, G. (1986) Principles of Isotope Geology. 2nd ed., John Wiley & Sons, 589 pp. Fiore, S. (1993) The occurrences of smectite and illite in a pyroclastic deposit prior to weathering: implications of the genesis of 2.1 clay minerals in volcanic soil. Appl. Clay Sci. 8, 249–259. Fiore, S., Huertas, F. and Linares, J. (1992) Mineralogy and geochemistry of some “so-called” paleosols from Mt. Vulture volcano (southern Italy). Chem. Geol. 99, 237–252. Gambardella, B., Giosa, P. and Marini, L. (2006) Il ruolo della interazione acqua-roccia nella genesi delle acque minerali del Monte Vulture. La Geologia del Monte Vulture (a cura di Claudia Principe), 113–148, Grafiche Finiguerra. Giannandrea, P., La Volpe, L., Principe, C. and Schiattarella, M. (2004) Carta geologica del Monte Vulture alla scala 1:25.000. Litografia Artistica Cartografica, Firenze. Giannandrea, P., La Volpe, L., Principe, C. and Schiattarella, M. (2006) Unità stratigrafiche a limiti inconformi e storia evolutiva del vulcano medio-pleistocenico di Monte Vulture (Appennino meridionale, Italia). Boll. Soc. Geol. It. 125, 67–92. Giggenbach, W. F. (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 44, 2021–2032. Gooddy, D., Clay, J. and Bottrell, S. H. (2002) Redox-driven changes in pore-water chemistry in the unsaturated zone of the Chalk aquifer beneath unlined cattle slurry lagoons. Appl. Geochem. 17, 903–921. Hoefs, J. (1997) Stable Isotope Geochemistry. 3rd ed., Springer, Berlin, 325 pp. La Volpe, L., Patella, D., Rapisardi, L. and Tramacere, A. (1984) The evolution of the Monte Vulture volcano (southern Italy): inferences from volcanological, geological and deep dipole electrical soundings data. J. Volcanol. Geotherm. Res. 22, 147–162. Laurenzi, M. A., Brocchini, D., Principe, C. and Ferrara, G. (1993) Mt. Vulture volcano chronostratigraphy and the effectiveness of dating young phlogopites. Abstracts (Oral presentation to) EUG 7°, Strasburgo, France, April 1993. Terra Abstract 5, 572–573. Longinelli, A. and Cortecci, G. (1970) Isotopic abundance of oxygen and sulfur in sulfate ions from river water. Earth Planet. Sci. Lett. 7, 376–380. Marini, L., Paiotti, A., Principe, C., Ferrara, G. and Cioni, F. (1994) Isotopic ratio and concentration of sulfur in theundersaturated alcaline magmas of Vulture Volcano (Italy). Bull. Volcanol. 56, 487–492. Martinis, B. and Pieri, M. (1964) Alcune informazioni sulla formazione evaporitica del Triassico superiore nell’Italia centrale meridionale. Mem. Soc. Geol. Ital. 4, 649–678. Matthess, G. (1982) The Properties of Groundwater. John Wiley & Sons, 213 pp. McArdle, N. C. and Liss, P. S. (1995) Isotopes and atmospheric sulphur. Atmos. Environ. 29, 2253–2556. Melluso, L., Morra, V. and Di Girolamo, P. (1996) The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite. Mineral. Petrol. 56, 225–250. Moncaster, S. J., Bottrell, S. H., Tellam, J. H., Lloyd, J. W. and Konhauser, K. O. (2000) Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. J. Contam. Hydrol. 43, 147–163. Paternoster, M. (2005) Mt. Vulture volcano (Italy): a geochemical contribution to the origin of fluids and to a better definition of its geodynamic setting. Ph.D. Thesis, University of Palermo, 92 pp. (in English). Paternoster, M., Liotta, M. and Favara, R. (2008) Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy. J. Hydrol. 348, 87–97. Plummer, L., Busby, J., Lee, R. and Hanshaw, B. (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour. Res. 26, 1981–2014. Principe, C. and Giannandrea, P. (2002) Stratigrafia ed evoluzione geologica del vulcano Vulture (Basilicata, Italia). Rapporti fra vulcanismo ed ambienti sedimentari. Cinematiche collisionali: tra esumazione e sedimentazione. 81° riunione estiva della Società Geologica Italiana, Torino 10–12 Settembre 2002, volume riassunti, 280–281. Robinson, B. W. and Bottrell, S. H. (1997) Discrimination of sulphate sources in pristine and polluted New Zealand river catchments using stable isotopes. Appl. Geochem. 12, 305– 319. Schiattarella, M., Benedice, P., Giano, S. I., Giannandrea, P. and Principe, C. (2005) Assetto strutturale ed evoluzione morfotettonica quaternaria del vulcano del Monte Vulture (Appennino Lucano). Boll. Soc. Geol. Ital. 124, 543–562. Spilotro, G., Canora, F., Caporale, F., Caputo, R., Fidelibus, M. D. and Leandro, G. (2005) Idrogeologia del M. Vulture (Basilicata, Italia). Aquifer Vulnerability and Risk, 2nd International Workshop. 4th Congress on the Protection and Management of Groundwater, Colorno (Italia), 21–23 September 2005. Stögbauer, A, Berner, Z. and Stüber, D. (2004) Redox control on the isotopic composition of dissolved sulfate in percolating sewage—an experimental study. Acta Hydrochim. Hydrobiol. 30, 304–315. Stoppa, F. and Principe, C. (1998) Erratum to “Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture (southern Italy): The Monticchio Lakes formation”. J. Volcanol. Geotherm. Res. 78, 251–265. Stoppa, F., Principe, C. and Giannandrea, P. (2008) Comments on: Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy) by D’Orazio et al. (2007). Lithos 103, 550–556. Thode, H. G. (1991) Sulfur isotopes in nature and the environment: an overview. Stable Isotopes, Natural and Anthropogenic Sulfur in the Environment. Scope 43 (Krouse, H. R. and Grinenko, V. A., eds.), 1–26, John Wiles & Sons. Wadleigh, M. A., Schwarcz, H. P. and Kramer, J. R. (1996) Isotopic evidence for the origin of sulphate in coastal rain. Tellus, 4B, 44–59. Yanagisawa, F. and Sakai, H. (1983) Thermal decomposition of barium sulphate–vanadium pentoxide–silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal. Chem. 55, 985–987. Yang, C., Telmer, K. and Veizer, J. (1996) Chemical dynamics of the “St. Lawrence” riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfate, and dissolved 87Sr/86Sr. Geochim. Cosmochim. Acta 60(5), 851–866.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorPaternoster, M.en
dc.contributor.authorParisi, S.en
dc.contributor.authorCaracausi, A.en
dc.contributor.authorFavara, R.en
dc.contributor.authorMongelli, G.en
dc.contributor.departmentDipartimento di Chimica, Universitá degli Studi della Basilicata, Campus Macchia Romana, I-85100 Potenza, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Universitá degli Studi della Basilicata, Campus Macchia Romana, I-85100 Potenza, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Chimica, Universitá degli Studi della Basilicata, Campus Macchia Romana, I-85100 Potenza, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0003-2510-2890-
crisitem.author.orcid0000-0003-4588-2935-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
paternoster et al. 2009.pdfMain article800.53 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

186
checked on Mar 27, 2024

Download(s) 20

335
checked on Mar 27, 2024

Google ScholarTM

Check