Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6538
DC FieldValueLanguage
dc.contributor.authorallLombardi, S.; University of Rome "La Sapienza"en
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-01-12T07:20:23Zen
dc.date.available2011-01-12T07:20:23Zen
dc.date.issued2010-05-20en
dc.identifier.urihttp://hdl.handle.net/2122/6538en
dc.description.abstractTwo Italian areas, characterized by different seismological histories, were investigated to enhance the basic knowledge of gas migration mechanisms during earthquakes. Sharp variations occur in the movement and concentration of some gaseous species due to the evolution of the local stress regime. The first area (Colpasquale) is located in the central Italian region of Marche and provided a good location to study gas migration in a seismically active region. The area was devastated by a sequence of shallow earthquakes over a 3 month-long period (September–December, 1997). The occurrence of this catastrophic event, as well as the long duration of the ‘‘seismic sequence”, presented a unique opportunity to study gas migration in a zone undergoing active displacement. Soil gas surveys were performed 1 day, 1 week, 1 year and 2 years after the main shock (Ms 5.6) in the Colpasquale area. In particular, results highlight a change in the Rn distribution during the three monitoring years indicating a variation of gas migration that may be linked to the evolution of the stress regime. The second study area is located in the Campidano Graben (southern part of Sardinia Island). This area is characterized by seismic quiescence, displaying an almost complete lack of historical earthquakes and instrumentally recorded seismicity. The consistently low values observed for all analyzed gases suggest that the studied area is likely characterized by sealed, non-active faults that prevent significant gas migration. The comparison of data from both studied areas indicate that soil gas geochemistry is useful to locate tectonic discontinuities even when they intersect non-cohesive clastic rocks near the surface and thus are not visible (i.e., ‘‘blind faults”).en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofApplied Geochemistryen
dc.relation.ispartofseries/25(2010)en
dc.subjectgas geochemistryen
dc.subjectblind faultsen
dc.titleRn, He and CO2 soil gas geochemistry for the study of active and inactive faultsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1206-1220en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.identifier.doi10.1016/j.apgeochem.2010.05.006en
dc.relation.referencesAmato, A., Margheriti, L., Azzara, R.M., Basili, A., Chiarabba, C., Ciaccio, M. G., Cimini, G. B., Di Bona, M., Frepoli, A., Lucente, F. P., Nostro, C., Selvaggi, G., 1998. Passive Seismology and Deep Structure in Central Italy. Pure Appl. Geophys., Special Issue "Geodynamics of the Lithosphere and the Earth’s Mantle", 151, 479-493. Ball, T. K., Cameron, D. G., Colman, T. B., Roberts, P. D., 1991. Behavior of radon in the geological environment: a review. Quart. J. Engin. Geol. 24, 169-182. Barba, S., Basili, R., 2000. Analysis of seismological and geological observations for moderate-size earthquakes: the Colfiorito Fault System (Central Apennines, Italy). Geophys. J. Internat. 141, 241-252. Barberi, F., Carapezza, M. L., 1994. Helium and CO2 soil gas emission from Santorini (Greece). Bull. Volcanol. 56, 335-342. Baubron, J. C., Allard, P., Toutain, J. P., 1990. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344, 51-53. Baubron, J. C., Allard, P., Sabroux, J. C., Tedesco, D., Toutain, J. P., 1991. Soil gas emanations as precursory indicators of volcanic eruptions. J. Geol. Soc. London 148, 571-576. Baubron, J. C., Rigo, A., Toutain J. P., 2002. Soil gas profiles as a tool to characterize active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth Planet. Sci. Lett., 196, 69-81. Beaubien, S. E., Ciotoli, G., Lombardi, S., 2003. Carbon dioxide and radon gas hazard in the Albani Hills area (central Italy). J. Volcan. Geotherm. Res. 123, 63-80. Bernard, P., 2001. From the search of ‘precursors’ to the research on ‘crustal transients’. Tectonophys, 338, 225-232. Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G., Gasperini, P., 1997. Catalogue of strong Italian earthquakes from 461 B. C. to 1999. ING-SGA, ING Rome, Italy. Boschi, E., Guidoboni, E., Ferrari, G., Valensise, G., 1998. The earthquakes of the Umbro-Marchigian Apennines, South-Eastern Area from 98 B. C. to 1984. I.N.G.-S.G.A., Bologna, Italy. Boschi, E., Guidoboni, E., Ferrari, G., Mariotti, D., Valensise, G., Gasperini, P., 2000. Catalogue of strong Italian earthquakes from 461 B.C. to 1997. Annali di Geofis. 43, 609-868. Calamita, F., Deiana, G., 1987. Geodynamics of Umbro-Marchigian Apennines. Memorie Società Geologica Italiana 35, 311-316. Carmignani, L., Barca, S., Cappelli, B., Di Pisa, A, Gattiglio, M., Oggiano, G., Pertusati, P. C., 1992. A tentative geodynamic model for the Hercynian basement of Sardinia. In: Carmignani, L., Sassi, F. P. (Eds), Contributions to the Geology of Italy. IGCP 276, Newslett. 5, 61-82. Carmignani, L., Barca, S., Disperati, L., Fantozzi, P., Funedda, G., Oggiano, G., Pasci, S., 1994. Tertiary compression and extension in Sardinian Basement. Boll. Geof. Teor. Appl. 36, 45-62. Cello, G., Deiana, G., Mangano, P., Mazzoli, S., Tondi, E., Ferreli, L., Maschio, L., Michetti, A. M., Serva, L.,Vittori, E., 1998. Evidence for surface faulting during the September 26, 1997, Colfiorito (Central Italy) earthquakes. J. Earthquake Engin. 2, 303-324. Ciotoli, G., Lombardi, S., Annunziatellis A., 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. J. Geophys. Res. 112, B05407, doi:10.1029/2005JB004044. Ciotoli, G., Finoia, M. G., 2005. From the Statistics to the Geostatistics: Introduction to the Analysis of Environmental and Territorial Data. Aracne Ed., Rome, Italy, 440 pp. Ciotoli, G., Lombardi, S., Voltattorni, N., 2004. Soil gas and indoor radon: a tool for health risk mitigation. International Workshop on “Radon data: Valorization, Analysis and Mapping”, 4-5 March 2005, Lausanne, Switzerland. Cocco, M., Nostro, C., Ekström, G., 2000. Static stress changes and fault interaction during the 1997 Umbria-Marche earthquake sequence, J. Seism., 4, 501-516. Dubois, C., Alvarez Calleja, A., Bassot, S., Chambaudet, A., 1995. Modelling the 3-dimensional microfissure network in quartz in a thin section of granite. In: Dubois, C. (Ed.), Gas Geochemistry. Science Reviews, Northwood, 357-368. Goovaerts, P., 1999. Geostatistics in soil science: state of art and perspectives. Geoderma, 89, 1-45. Hermansson, H.P., Akerblom, G., Chyssler J., Linden, A., 1991. Geogas: A Carrier or a Tracer. SKN Report No. 51. National Board for Spent Nuclear Fuel, Stockholm. Hickman, S., Sibson, R., Bruhn, R., 1995. Introduction to special section: mechanical involvement of fluids in faulting. J. Geophys. Res. 100, 12,831-12,840. Hinkle, M., 1994. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases. Appl. Geochem. 9, 53-63. Holland, P. W., Emerson, D. E., 1990. The global helium-4 content of near-surface atmospheric air. Theophrastus publ., Athens, Greece (GRC), 97-109. Holub, R. F., Brady, B. T., 1981. The effect of stress on radon emanation from rock, J. Geophys. Res. 86, 1776-1784. Irwin, W. P., Barnes, I., 1980. Tectonic relations of carbon dioxide discharges and earthquakes. J. Geophys. Res. 85, 3115-3121. Jenkins, A. C., Cook, A., 1961. Argon, Helium and the Rare Gases. History, Occurrence and Properties. Interscience Publishers, London. Kahler, D. E., 1981. Helium... A gaseous geochemical guide to faults, fractures and geothermal systems. Geotherm. Res. Council Trans. 5, 87-89. Kerrick, D. M., McKibben, M. A., Seward, T. M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285-293. King, C. Y., Zhang, W., King, B. S., 1993. Radon anomalies on three kinds of faults in California. Pure Appl. Geophys. 141, 111-124. King, C. Y., Zhang, W., Zhang, Z., 2006. Earthquake-induced groundwater and gas changes. Pure Appl. Geophys., 163, 633-645. Komnitsas, K., Modis, K., 2009. Geostatistical risk estimation at waste disposal sites in the presence of hot spots. J. Hazard. Mater. 164, 1185-1190. Lecca, L., Mongelli, F., Pecorini, G., Tramacere, A., 1997. Oligo-Miocene volcanic sequences and rifting stages in Sardinia: a review. Per. Mineral. 66, 7-61. Mabit, L., Bernard, C., 2007. Assessment of spatial distribution of fallout radionuclides through geostatistics concept. J. Environ. Radioact. 97, 206-219. Marini, A., Murru, M., 1983. Tectonic movements in Sardinia between Upper Miocene and Pleistocene. Geogr. Fis. Din. Quater. 6, 39-42. Minissale, A., Magro, G., Tassi, F., Frau, F., Vaselli, O., 1999. The origin of natural gas emissions from Sardinia island, Italy. Geochem. J. 33, 1-12. Montone, P., Mariucci, M. T., Pondrelli, S., Amato, A., 2004. An improved stress map for Italy and surrounding regions (Central Mediterranean). J. Geophys. Res., 109, B10410. doi:10.1029/2003JB002703. Morawska, L., Phillips, C. R., 1993. Dependence of the radon emanation coefficient on radium distribution and internal structure of the material. Geochim. Cosmochim. Acta 57, 1783-1797. Peronaci, F., 1953. The Sardinian earthquake of the 13rd November 1948. Ann. Geofis. 6, 3-11. Pinault, J. L., Baubron, J. C., 1996. Signal processing of soil gas radon, atmospheric pressure, moisture, and soil temperature data: a new approach for radon concentration modeling, J. Geophys. Res. 101, B2, 3157-3171. Pinault, J. L., Baubron, J. C., 1997. Signal processing diurnal and semidiurnal variations in radon and atmospheric pressure: a new tool for accurate in-situ measurements of soil gas velocity, pressure gradient and tortuosity. J. Geophys. Res. 102, 18101-18120. Roberts, A. A., Friedman, I., Donovan, T. J., Denton, E. H., 1975. Helium survey, a possible technique for locating geothermal reservoirs. Geophys. Res. Lett. 2, 209-210. Sinclair, A. J., 1991. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited, J. Geochem. Explor. 41, 1-22. Sugisaki, R., Anno, H., Aedachi, M., Ui, H., 1980. Geochemical features of gases and rocks along active faults. Geochem. J. 14, 101-112. Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., Satake, H., Mizutani, Y., 1983. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J. Geol. 91, 239-258. Tanner, A. B., 1964. Radon migration in the ground: a review. In: Adams, J. A. S., Lowder, W. M. (Eds), Natural Radiation Environment. University of Chicago Press, Chicago, 161-190. Thayer, W. C., Griffith, D. A., Goodrum, P. E., Diamond, G. L., Hassett, J. M., 2003. Application of Geostatistics to Risk Assessment. Risk Analysis, 23, 945-960. Toutain, J. P., Baubron, J. C., 1999. Gas geochemistry and seismotectonics: a review. Tectonophys. 304, 1-27. Wackernagel, H., 1996. Multivariate geostatistics: an introduction with applications. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 33, 363A. Zhang, J., Yao, N., 2008. The Geostatistical Framework for Spatial Prediction. Geo-spatial Information Science, 11, 3, 180-185.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLombardi, S.en
dc.contributor.authorVoltattorni, N.en
dc.contributor.departmentUniversity of Rome "La Sapienza"en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità La Sapienza-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CP.pdfmain article2.09 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

42
checked on Feb 10, 2021

Page view(s)

233
checked on Apr 20, 2024

Download(s)

28
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric