Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6522
DC FieldValueLanguage
dc.contributor.authorallMassa, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallLovati, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallD'Alema, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallFerretti, G.en
dc.contributor.authorallBakavoli, M.en
dc.date.accessioned2011-01-11T13:23:19Zen
dc.date.available2011-01-11T13:23:19Zen
dc.date.issued2010-12-01en
dc.identifier.urihttp://hdl.handle.net/2122/6522en
dc.description.abstractFrom March to September 2009, a velocimetric network was installed in Narni, central Italy, a village on the top of a limestone ridge. The aim was to investigate local site effects due to the 220-m-high ridge, which is characterized by slopes ranging from 22° to 35°. To investigate amplification without and with a reference site, three stations were installed at the base of the hill and seven at the crest. The network recorded 702 earthquakes, many of them from the 2009 L'Aquila sequence. To determine the dependence of amplification on the morphological features, the spectra were computed for horizontal components rotated into a range of azimuths. Both the ratio of the horizontal-to-vertical-component spectra and the ratio of the spectra at the ridge crest with respect to a reference station at the base of the ridge showed amplification by a factor of ca. 4.5 for frequencies between 4 Hz and 5 Hz. The highest amplifications were seen for the directions of the ground motion perpendicular to the main elongation of the ridge. Finally, considering events with an epicentral distance less than 30 km, empirical ground motion models were calibrated for maximum horizontal peak ground acceleration, velocity and acceleration response spectra (5% damping) up to 1 s, to estimate the site corrective coefficients for topographic amplification. The data show corrective coefficients between 0.35 and 0.48 (log10 scale; amplification, 2.2-3.0) for the spectral ordinates between 0.2 s and 0.3 s.en
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Seismological Society of Americaen
dc.relation.ispartofseries6/100(2010)en
dc.subjecttopographic effectsen
dc.subjectground-motion prediction equationsen
dc.titleAn experimental approach for estimating seismic amplification effects at the top of a ridge, and the implication for ground-motion predictions: the case of Narni (central Italy).en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3020–3034en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.identifier.doi10.1785/0120090382en
dc.relation.referencesAmanti, M., R. Bontempo, P. Cara, G. Conte, D. Di Bucci, P. Lembo, N. A. Pantaleone, and R. Ventura (2002). Editors EDS, Carta Geologica d’Italia Interattiva 1:100,000 (Interactive geological map of Italy, 1:100,000), SGN, SSN, ANAS, 3cd-rom. Athanasopoulos, G. A., P. C. Pelikis, and E. A. Leonidou (1999). Effects of surface topography on seismic ground response in the Egion (Greece) 15-6-1995 earthquake. Soil Dynam. Earthquake Eng. 18 135-149. Bard P. Y. (1982). Diffracted waves and displacement fields over two-dimensional elevated topographies. Geophys. J. Int. 71 731-760. Bard P.-Y. and B. E. Tucker (1985), Underground and ridge site effects: a comparison of observation and theory, Bull. Seism. Soc. Am., 75, 905-922. Bindi D., S. Parolai, F. Cara, G. Di Giulio, G. Ferretti, L. Luzi, G. Monachesi, F. Pacor, and A. Rovelli (2009), Site Amplifications Observed in the Gubbio Basin, Central Italy: Hints for Lateral Propagation Effects, Bull. Seism. Soc. Am., 99, 741 - 760. Bindi, D., Luzi, L., Pacor, F., Franceschina, G. and Castro, R.R. (2006), Ground-Motion Prediction from Empirical Attenuation Relationships versus Recorded Data: The Case of the 1997-1998 Umbria-Marches, Central Italy, Strong Motion Data Set, Bull. Seism. Soc. Am., 96 (3), 984-1002. Bommer J.J. and Rodríguez C.E. (2002), Earthquake-induced landslides in Central America, Engineering Geology, 63, issue 3-4, 189-220. Boore D. M. (1972), A note on the effect of simple topography on seismic SH waves. Bull. Seism. Soc. Am., 62, 275-284. Borcherdt R.D. (1970), Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Am., 60, 29-61. Bouchon M. and Barker J.S. (1996), Seismic response of a hill: the example of Tarzana, California, Bull. Seism. Soc. Am., 86, 1a, 66-72. Bragato P.L. and Slejko, D. (2005), Empirical ground-motion attenuation relations for the Eastern Alps in the magnitude range 2.5-6.3, Bull. Seism. Soc. Am., 95 (1), 252-276. Brambati A., Faccioli E., Carulli G. B., Cucchi F., Onofri R. Stefanini S. and Ulcigrai F. (1980), Studio di microzonazione sismica dell’area di Tarcento (Friuli), CLUET, Trieste (in Italian). Servizio Geologico d’Italia, Carta Geologica d’Italia 1:100000, Foglio 138 Terni, www.apat.gov.it Caserta A., F. Bellucci, G. Cultrera, S. Donati, F. Marra, G. Mele, B. Palombo and A. Rovelli (2000), Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence, Journal of Seismology, 4, 555-565. Celebi M. (1987), Topographical and geological amplifications determined from strong motion and aftershock records of the 3 March 1985 Chile earthquake, Bull. Seism. Soc. Am., 77, 4, 1147-1167. CEN (Comité Européen de Normalisation) (2004), Eurocode 8: Design of structures for earthquake resistanc - Part 5: Foundations, retaining structures and geotechnical aspects. Brussels, Belgium. Chavez-Garcia F., Sanchez L.R. and Hatzfeld D. (1996), Topographic site effects and HVSR. A comparison between observation and theory, Bull. Seism. Soc. Am., 86, 5, 1559-1573. Chávez-García F., Miguel Rodríguez, Edward H. Field, and Denis Hatzfeld (1997), Topographic site effects. A comparison of two nonreference methods, Bull. Seism. Soc. Am., 87, 1667-1673. Donati S., Marra F. and Rovelli A. (2001), Damage and ground shaking in the town of Nocera Umbra during Umbria-Marche, central Italy, earthquakes: the special effect of a fault zone. Bull. Seism. Soc. Am.,91, 511-519. Faccioli E. (1986), Elementi per una guida alle indagini di Microzonazione Sismica-Progetto Finalizzato “Geodinamica” monografie finali Vol.7, Consiglio Nazionale delle ricerche Quaderni de “La ricerca scientifica”, Roma. 72-82 (in Italian) Faccioli E., Vanini M. and Frassine L. (2002), “Complex” Site Effects in Earthquake Ground Motion, including Topography. 12th European Conference on Earthquake Engineering, Barbican Centre, London, UK. Frankel A., William Stephenson, and David Carver (2009), Sedimentary Basin Effects in Seattle, Washington: Ground-Motion Observations and 3D Simulations, Bull. Seism. Soc. Am., 99, 1579-1611. Géli L. and P.-Y. Bard (1988), The effect of topography on earthquake ground motion : a review and new results, Bull. Seism. Soc. Am. 78, 42-63. Griffiths D. W. and Bollinger G. A. (1979), The effect of Appalachian Mountain topography on seismic waves, Bull. Seism. Soc. Am., 69, 1081-1105. Graizer, V. (2009), Low-velocity zone and topography as a source of site amplification effect on Tarzana hill, California. Soil Dynamics and Earthquake Engineering, 29, 324-332. Hartzell S. H., Carver D. L. and King K. W. (1994), Initial investigation of site and topographic effects at Robinwood Ridge, California, Bull. Seism. Soc. Am., 84, 1336-1349. Kallou P.V., Gazetas G. and Psarropoulos P.N. (2001), A case history on soil and topographic effects in the 7th September 1999 Athens earthquake, Proc. of 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California. Kawase H. and K. Aki (1990), Topography effect at the critical SV-wave incidence: possible explanation of damage pattern by the Whittier Narrows, California, earthquake of 1 October 1987, Bull. Seism. Soc. Am., 80, 1-22. Komatitsch D. and Vilotte J.P. (1998), The Spectral Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures, Bull. Seism. Soc. Am., 88, 368-392. Isella L., Podestà S., Resemini S., Pasta M. and Eva C. (2004), Relationship between damage and peak accelerations in Ripabottoni (CB) during the 2002 Molise earthquakes, Earthquake Spectra, 20, issue S1, 119-130. LeBrun B., Hatzfeld D., Bard P.Y. and Bouchon M. (1999), Experimental study of the ground motion on a large scale topographic hill al Kitherion (Greece), Journal of Seism., 3, 1-15. Lee S. J., How-Wei Chen and Bor-Shouh Huang (2008), Simulations of Strong Ground Motion and 3D Amplification Effect in the Taipei Basin by Using a Composite Grid Finite-Difference Method, Bull. Seism. Soc. Am., 98, 1229 - 1242. Lenti L., S. Martino, A. Paciello and G. Scarascia Mugnozza (2009), Evidence of Two-Dimensional Amplification Effects in an Alluvial Valley (Valnerina, Italy) from Velocimetric Records and Numerical Models, Bull. Seism. Soc. Am., 99, 1612 - 1635. Lermo J. and Chavez-Garcia F.J. (1993), Site effect evaluation using spectral ratio with only one station, Bull. Seism. Soc. Am., 83, 1574-1594. Marra F., R. Azzara, F. Bellucci, A. Caserta, G. Cultrera, B. Mele, B. Palombo, A. Rovelli and E. Boschi (2000), Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy), Journal of Seism., 4, 543-554. Marzorati S., C. Ladina, E. Falcucci, S. Gori, G. Ameri, D. Piccarreda and F. Galadini (2009), Castelvecchio subequo (AQ): evidenze di amplificazione sismica su roccia, Convegno Gruppo Nazionale Geofisica della Terra Solida – GNGTS, Trieste, 16-19 Novembre (in Italian). Massa M., Morasca P., Moratto L., Marzorati S., Costa G., Spallarossa D. (2008), Empirical ground motion prediction equations for Northern Italy using weak and strong motion amplitudes, frequency content and duration parameters. Bull. Seism. Soc. Am. 98 (3), 1319-1342. Massa M., Ferretti G., Cevasco A., Isella L. e Eva C. (2004), Analysis of site amplification phenomena: an application in Ripabottoni for the 2002 Molise, Italy, earthquake, Earthquake Spectra, 20, issue S1, 107-118. Nakamura Y. (1989), A method for dynamic characteristics estimations of subsurface using microtremors on the ground surface, Quarterly Rept. RTRI Japan 30, 25-33. NTC (Nuove Norme Tecniche per le Costruzioni) (2008), Part 3: Categorie di sottosuolo e condizioni topografiche, Gazzetta Ufficiale n. 29 del 4 febbraio 2008. Paolucci R. (2002), Amplification of earthquake ground motion by steep topographic irregularities. Earth. Eng. and Structural Dynamics, 31, 1831-1853. Pedersen H. (1994), Ground-motion amplitude across ridges, Bull. Seism. Soc. Am., 84, 1786-1800. Pierantoni, P. P. (1995), Caratterizzazione geologico-strutturale dell'Appennino umbro-sabino: Monti Martani, dorsale narnese-amerina e Monti Sabini, Tesi di Dottorato, Università degli studi di Camerino (in Italian). Ponti D. J. and Ray E. Wells (1991), Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake, Bull. Seism. Soc. Am., 81, 1480-1510. Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (1992), “Numerical Recipes in C”, the art of scientific computing, Cambridge University. Rastrepo J. I. and Cowan H. (2000), The “Eje Cafetero” earthquake, Colombia of January 25 1999, Bulletin of New Zealand Society of Earthquake Engineering, 33, 1-29. Rovelli A., A. Caserta, F. Marra and V. Ruggiero (2002), Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. Seism. Soc. Am., 92, 2217-2232. Sanchez-Sesma F. J. (1985), Diffraction of elastic SH waves by wedges, Bull. Seism. Soc. Am., 75, 1435-1446. Sanchez-Seisma F. J. (1990), Elementary solutions for response of a wedge-shaped medium to incident SH and SV waves, Bull. Seism. Soc. Am., 80, 737-742. Sanchez-Sesma F. J. and Campillo M. (1991), Diffraction of P, SV, and Rayleigh waves by topographical features: a boundary integral formulation, Bull. Seism. Soc. Am., 81, 2234-2253. Semblat J. F., Marc Kham and P. Y. Bard (2008), Seismic-Wave Propagation in Alluvial Basins and Influence of Site-City Interaction, Bull. Seism. Soc. Am., 98, 2665 - 2678. Snelson C. M., T. M. Brocher, K. C. Miller, T. L. Pratt and A. M. Tréhu (2007), Seismic Amplification within the Seattle Basin, Washington State: Insights from SHIPS Seismic Tomography Experiments, Bull. Seism. Soc. Am., 97, 1432 - 1448. Spudich P., Hellweg M. and Lee W.H. (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implication for mainshock motion, Bull. Seism. Soc. Am., 86, 193-208.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMassa, M.en
dc.contributor.authorLovati, S.en
dc.contributor.authorD'Alema, E.en
dc.contributor.authorFerretti, G.en
dc.contributor.authorBakavoli, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptUniversità di Genova - Genova - Italy-
crisitem.author.deptInternational Institute of Earthquake Engineering and Seismology-
crisitem.author.orcid0000-0003-0696-2035-
crisitem.author.orcid0000-0002-2046-2152-
crisitem.author.orcid0000-0001-6581-8653-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Massa_et_al_2010.pdfMain article1.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

45
checked on Feb 10, 2021

Page view(s) 50

291
checked on Apr 17, 2024

Download(s)

49
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric