Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6424
DC FieldValueLanguage
dc.contributor.authorallHüsing, S. K.; Paleomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallCascella, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallHilgen, F. J.; Stratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallKrijgsman, W.; Paleomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.authorallKuiper, K. F.; Department of Isotope Geochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlandsen
dc.contributor.authorallTurco, E.; Dip. di Scienze della Terra, Universita di Parma, Parco Area della Scienze 157/A, 43100 Parma, Italyen
dc.contributor.authorallWilson, D.; Department of Geological Sciences, University of California, Santa Barbara, CA 93106, USAen
dc.date.accessioned2010-12-20T14:39:25Zen
dc.date.available2010-12-20T14:39:25Zen
dc.date.issued2010-02en
dc.identifier.urihttp://hdl.handle.net/2122/6424en
dc.description.abstractAn integrated high-resolution magnetobiocyclostratigraphy including radioisotopic dating and astronomical tuning is presented for the interval between 15.29 and 14.17 Ma in the marine La Vedova section in northern Italy. The natural remanent magnetization is carried by the iron sulphide greigite and the resultant magnetostratigraphy can be correlated straightforwardly to the interval ranging from C5Bn.2n to C5ADn in the Astronomically Tuned Neogene Time Scale (ATNTS2004). Spectral analysis on high-resolution magnetic susceptibility and geochemical proxy records in the depth domain and, using our magnetobiostratigraphic age model, in the time domain demonstrate that the various scales of cyclicity in the section are related to astronomical climate forcing. Starting from our initial age model, larger-scale cycles were first tuned to eccentricity. This first-order tuning was followed by tuning the basic cycle to precession and boreal summer insolation using inferred phase relations between maxima in Ca/Al, redox-sensitive elements and Ba, and minima in magnetic susceptibility, and maxima in precession and minima in obliquity and boreal summer insolation. Our astronomical ages for reversal boundaries are supported by analysis of sea floor spreading rates and should replace the existing ages in the ATNTS2004 lacking direct astronomical control. Two major steps in the geochemical proxy records, astronomically dated at 15.074 and 14.489 Ma, coincide with abrupt changes in sedimentation rate, and are the result of the combined effect of the ∼400-kyr eccentricity cycle superimposed upon a longer-term climatic or tectonic induced trend.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries3-4 / 290 (2010)en
dc.subjectMiddle Mioceneen
dc.subjectLanghianen
dc.subjectMediterraneanen
dc.subjectastronomical tuningen
dc.subjectpalaeomagnetismen
dc.subjectbiostratigraphyen
dc.subjectenvironmental changesen
dc.subjectorbital forcingen
dc.titleAstrochronology of the Mediterranean Langhian between 15.29 and 14.17 Maen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber254–269en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.epsl.2009.12.002en
dc.relation.referencesAn integrated high-resolution magnetobiocyclostratigraphy including radioisotopic dating and astronomical tuning is presented for the interval between 15.29 and 14.17 Ma in the marine La Vedova section in northern Italy. The natural remanent magnetization is carried by the iron sulphide greigite and the resultant magnetostratigraphy can be correlated straightforwardly to the interval ranging from C5Bn.2n to C5ADn in the Astronomically Tuned Neogene Time Scale (ATNTS2004). Spectral analysis on high-resolution magnetic susceptibility and geochemical proxy records in the depth domain and, using our magnetobiostratigraphic age model, in the time domain demonstrate that the various scales of cyclicity in the section are related to astronomical climate forcing. Starting from our initial age model, larger-scale cycles were first tuned to eccentricity. This first-order tuning was followed by tuning the basic cycle to precession and boreal summer insolation using inferred phase relations between maxima in Ca/Al, redox-sensitive elements and Ba, and minima in magnetic susceptibility, and maxima in precession and minima in obliquity and boreal summer insolation. Our astronomical ages for reversal boundaries are supported by analysis of sea floor spreading rates and should replace the existing ages in the ATNTS2004 lacking direct astronomical control. Two major steps in the geochemical proxy records, astronomically dated at 15.074 and 14.489 Ma, coincide with abrupt changes in sedimentation rate, and are the result of the combined effect of the ∼400-kyr eccentricity cycle superimposed upon a longer-term climatic or tectonic induced trend.and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20, 1–17. Backman, J., Shackleton, N.J., 1983. Quantative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans. Mar. Micropaleontol. 8, 141–170. Billups, K., Pälike, H., Channell, J.E.T., Zachos, J., Shackleton, N.J., 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett. 224, 33–44. Bown, P.R., 1998. Calcareous Nannofossil Biostratigraphy: British Micropaleont. Soc. Publ. Series, p. 314. Di Stefano, E., Foresi, L.M., Lirer, F., Iaccarino, S., Turco, E., Amore, F.O., Morabito, S., Salavatorini, G., Mazzei, R., Abdul Aziz, H., 2008. Calcareous plankton high resolution bio-magnetostratigraphy for the Langhian of the Mediterranean area: Riv. Ital. Paleontol. Stratigr. Dunlop, D.J., Özdemir, Ö., 1997. Rock magnetism. Fundamentals and frontiers. Cambridge University Press, p. 573. Dymond, J., Suess, E., Lyle, M., 1992. Barium in deep-sea sediments: a proxy for paleoproductivity. Paleoceanography 7, 163–181. Egli, R., 2004a. Characterisation of individual rock magnetic components by analysis of remanence curves, 1.Unmixing natural sediments. Stud. Geophys. Geodaet. 48, 391–446. Egli, R., 2004b. Characterisation of individual rock magnetic components by analysis of remanence curves, 2. Fundamental properties of coercivity distribution. Phys. Chem. Earth 29, 851–867. Flower, B.P., Kennett, J., 1993. Middle Miocene ocean-climate transition: highresolution oxygen and carbon isotopic records from deep sea Drilling Project Site 558A, southwest Pacific. Paleoceanography 8, 811–843. Flower, B.P., Kennett, J.P., 1994. The middle Miocene climate transition, East Antarctic ice sheet development, deep ocean circulation and global carbon cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 537–555. France, D.E., Oldfield, F., 2000. Identifying goethite and hematite from rock magnetic measurements of soild and sediments. J. Geophys. Res. 105. Francois, R., Honjo, S., Manganini, S.J., Ravizza, G.E., 1995. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction: Global Biogeochem. Cyles 9, 289–303. Goldberg, E.D., Arrhenius, G.O.S., 1958. Geochemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta 13, 153–212. Heslop, D., McIntosh, G., Dekkers, M.J., 2004. Using time and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int. 156, 1–9. Hilgen, F.J., 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale. Earth Planet. Sci. Lett. 104, 226–244. Hilgen, F.J., Krijgsman, W., Langereis, C.G., Lourens, L.J., Santarelli, A., Zachariasse, W.J., 1995. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495–510. Hilgen, F.J., Abdul Aziz, H., Krijgsman, W., Raffi, I., Turco, E., 2003. Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle–Upper Miocene, northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 229–264. Holbourn, A., Kuhnt, W., Schulz, M., Erlenkeuser, H., 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483–487. Holbourn, A., Kuhnt,W., Schulz,M., Flores, J.A., Andersen, N., 2007. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534–550. Horng, C.-S., Torii, M., Shea, K.-S., S.-J., K., 1998. Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailliao-chi section, southwestern Taiwan. Earth Planet. Sci. Lett. 164, 467–482. Hüsing, S.K., 2008. Astrochronology of the Mediterranean Miocene. Linking Palaeoenvironmental Changes to Gateway Dynamics, Geologica Ultraiectina No. 295. Utrecht University. http://igitur-archive.library.uu.nl/dissertations/2008-1211- 200329/UUindex.html. Hüsing, S.K., Hilgen, F.J., Abdul Aziz, H., Krijgsman, W., 2007. Completing the Neogene geological time scale between 8.5 and 12.5 Ma. Earth Planet. Sci. Lett. 253, 340–358. Hüsing, S.K., Dekkers, M.J., Franke, C. and Krijgsman, W., 2009, The Tortonian reference section at Monte dei Corvi (Italy): evidence for early remanence acquisition in greigite-bearing sediments, Geophys. J. Int., in revision. Hüsing, S.K., Kuiper, K.F., Link, W., Hilgen, F.J., Krijgsman, W., 2009a. Monte dei Corvi (Northern Apennines, Italy): a Mediterranean reference section for the Tortonian Stage. Earth Planet. Sci. Lett. 282, 140–157. Hüsing, S.K., Zachariasse, W.J., van Hinsbergen, D.J.J., Krijgsman, W., Inceöz, M., Harzhauser, M., Mandic, O., Kroh, A., 2009b. Oligocene-Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. In: Van Hinsbergen, D.J.J., Edwards, M.A., Govers, R. (Eds.), Collision and Collapse at the Africa-Arabia-Eurasia Subduction Zone, Vol. 311. Special Publication: Geological Society London, pp. 107–132. Kruiver, P.P., Dekkers, M.J., Heslop, D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 189, 269–276. Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R., 2008. Synchronizing rock clocks of Earth history. Science 320, 500–504. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A longterm numerical solution for the insolation quantities of the Earth: Astron. Astrophysical 428, 261–285. Lea, D.W., Boyle, A., 1990. Foraminiferal reconstruction of barium distributions in water masses of the glacial oceans. Paleoceanography 5, 719–742. Lourens, L.J., Wehausen, R., Brumsack, H.J., 2001. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409, 1029–1033. Lourens, L.J., Hilgen, F.J., Shackleton, N.J., Laskar, J., Wilson, D., 2004. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geological Time Scale. Cambridge University Press, pp. 409–440. Mader, D., Montanari, A., Gattacceca, J., Koeberl, C., Handler, R., Coccioni, R., 2001. 40Ar/ 39Ar dating of a Langhian biotite-rich clay layer in the pelagic sequence of the Conero Riviera, Ancona, Italy. Earth Planet. Sci. Lett. 194, 111–126. Mader, D., Cleaveland, L., Bice, D., Montanari, A., Koeberl, C., 2004. High-resolution cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic succession in the Conero Riviera, Ancona (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 325–344. Maher, B.A., Karloukovski, V.V., Mutch, T.J., 2004. High-field remanence properties of synthetic and natural submicrometer haematites and goethite: significance for environmental context. Earth Planet. Sci. Lett. 226, 491–505. McDougall, I., Harrison, M.T., 1999. Geochronology and Thermochronology by the 40Ar/ 30Ar Method. Oxford University Press, Inc, p. 269. Montanari, A., Beaudoin, B., Chan, L.S., Coccioni, R., Deino, A., De Paolo, D.J., Emmanuel, L., Fornaciari, E., Kruge, M., Lundblad, S., Mozzato, C., Portier, E., Renard, M., Rio, D., Sandroni, P., Stankiewicz, A., 1997. Integrated stratigraphy of the Middle and Upper Miocene pelagic sequence of the Conero Riviera (Marche region, Italy). In: Montanari, A., Odin, G.S., Coccioni, R. (Eds.), Miocene Stratigraphy: An Integrated Approach. : Volume Dev. Palaeontol. Stratigr., Vol.15. Elsevier, pp. 409–450. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs timeseries analysis. Trans. Am. Geophys. Union (EOS) 77, 379. Pälike, H., Shackleton, N.J., 2000. Constraints on astronomical parameters from the geological record for the last 25 Myr. Earth Planet. Sci. Lett. 182, 1–14. Rio, D., Raffi, I., Villa, G., 1990. Pliocene–Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. In: Kastens, K., Mascle, J.E.A. (Eds.), Proc. ODP, Sci. Res, Vol. 107. College Station (TX, pp. 513–533. Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett. 134, 227–236. Rohling, E.J., Hilgen, F.J., 1991. The eastern Mediterranean climate at times of sapropel formation: a review. Geol. Mijngebouw 70, 253–264. Rossignol-Strick, M., 1985. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 49. Rossignol-Strick, M., 1993. African monsoons, an immediate climate response to orbital forcing. Nature 304, 46–49. Schmitz, B., 1987. Barium, equatorial high productivity, and the northward wandering of the Indian continent. Paleoceanography 2, 63–77. Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comp. Geosci. 28, 421–426. Shackleton, N.J., Raffi, I., Rohl, U., 2001. Astronomical age calibration in the Middle Miocene: AGU Spring Meeting 2001. Abstract, San Francisco. Shevenell, A.E., Kennett, J.P., 2004. Paleoceanographic change during the middle Miocene climate revolution: an Antarctic stable isotope perspective. In: Exon, N., Kennett, J.P., Malone, M. (Eds.), The Cenozoic Southern Ocean: Tectonics, Sedimentation and Climate Change between Australia and Antarctica. : Geophys. Monogr. Ser., Vol. 151. AGU,Washington, D.C, pp. 235–252. Shevenell, A.E., Kennett, J.P., Lea, D.W., 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science 305, 1766–1770. Vasiliev, I., Dekkers,M.J., Krijgsman,W., Franke, C., Langereis, C.G.,Mullender, T.A.T., 2007. Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene– Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophys. J. Int. doi:10.1111/j.1365-246X.2007.03560.x. Vasiliev, I., Franke, C., Meeldijk, J.D., Dekkers, M.J., Langereis, C.G., Krijgsman, W., 2008. Putative greigite magnetofossils from the Pliocene epoch. Nat. Geosci. Vincent, E., Berger, W.H., 1985. Carbon dioxide and polar cooling in the Miocene. In: Sunquist, E.T., Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2. AGU, Washington, D.C, pp. 455–468. Wehausen, R., Brumsack, H.-J., 1999. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments; a key for understanding sapropel formation. Mar. Geol. 153, 161–176. Wehausen, R., Brumsack, H.J., 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 325–352. Woodruff, F., Savin, S.M., 1989. Miocene deepwater oceanography. Paleoceanography 4, 87–140. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorHüsing, S. K.en
dc.contributor.authorCascella, A.en
dc.contributor.authorHilgen, F. J.en
dc.contributor.authorKrijgsman, W.en
dc.contributor.authorKuiper, K. F.en
dc.contributor.authorTurco, E.en
dc.contributor.authorWilson, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentPaleomagnetic Laboratory “Fort Hoofddijk”, Department of Earth Sciences, Budapestlaan 17, 3584 CD Utrecht, The Netherlandsen
dc.contributor.departmentDepartment of Isotope Geochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlandsen
dc.contributor.departmentDip. di Scienze della Terra, Universita di Parma, Parco Area della Scienze 157/A, 43100 Parma, Italyen
dc.contributor.departmentDepartment of Geological Sciences, University of California, Santa Barbara, CA 93106, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptStratigraphy/Paleontology, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands-
crisitem.author.deptPaleomagnetic Laboratory “Fort Hoofddijk,” Department of Earth Sciences, Utrecht University, Utrecht, Netherlands-
crisitem.author.deptDepartment of Isotope Geochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands-
crisitem.author.deptDipartimento di Fisica e Scienze della Terra, Università di Parma-
crisitem.author.deptPaleomagnetic Laboratory ‚Fort Hoofddijk-
crisitem.author.deptDepartment of Earth Sciences, Utrecht University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptInstitute for Crustal Studies, University of California in Santa Barbara, USA-
crisitem.author.orcid0000-0002-8255-3244-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Husingetal_2010.pdf3.65 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

57
checked on Feb 10, 2021

Page view(s) 20

262
checked on Mar 27, 2024

Download(s)

24
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric