Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6412
DC FieldValueLanguage
dc.contributor.authorallMontuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFalcone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallThurber, C.; Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USAen
dc.contributor.authorallReyners, M.; GNS Science, Lower Hutt, New Zealanden
dc.contributor.authorallEberhart-Phillips, D.; GNS Science, Lower Hutt, New Zealand and University of California, Davis, CA, USAen
dc.date.accessioned2010-12-16T14:36:47Zen
dc.date.available2010-12-16T14:36:47Zen
dc.date.issued2010-10en
dc.identifier.urihttp://hdl.handle.net/2122/6412en
dc.description.abstractWe map the b-value in the subduction zone of theWellington region, NewZealand, using a high quality earthquake catalogue relocated with a 3-D seismic velocity model, consisting of 50 314 events that occurred between 1990 and 2005. In order to investigate heterogeneity in the crust of the overlying plate and in the upper plane of the Wadati–Benioff Zone (WBZ), we analyse a series of cross-sections perpendicular to the strike of the subduction zone. We calculate the b-values selecting events with magnitude of completeness ≥2.4 and depth ≤65 km and projecting the seismicity within 20 km on each side of the cross-sectional planes. We observe areas of high b-value (∼1.7) near the plate interface and regions of low b-value anomalies are detected both in the WBZ in the northwest region below 40 km depth and in the overlying plate in the northern South Island at 10 km depth. The anomalies are statistically significant based on Utsu’s p-test and the bootstrap method and are not data processing method or parameter dependent. We compare the b-value distribution with previously determined 3-D distributions of Vp, Vp/Vs andQp from seismic tomography. This comparison suggests that material inhomogeneity, caused by fluid filled cracks resulting from dehydration of the subducted slab and subducted sediments, is the predominant cause of b-value variation in the shallow part of this subduction zone. Our observations are consistent with a previously proposed conceptual model that fluid distribution in the shallow part of this subduction zone is controlled by the permeability of geological terranes in the overlying plate.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries1/183 (2010)en
dc.subjectSeismic attenuationen
dc.subjectSeismic tomographyen
dc.subjectStatistical seismologyen
dc.subjectSubduction zone processesen
dc.titleCrustal heterogeneity highlighted by spatial b-value map in theWellington region of New Zealanden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber451-460en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.1111/j.1365-246X.2010.04750.xen
dc.relation.referencesAki, K., 1965. Maximum likelihood estimate of b in the formula log N = a – b M and its confidence limits, Bull. Earthq. Res. Inst. Univ. Tokyo, 43, 237–239. Aktar, M. et al., 2004. Spatial variation of aftershock activity across the rupture zone of the 17 August 1999 Izmit earthquake, Turkey, Tectonophysics, 391, 325–334. Allen, J.R.L., 1986. Earthquake magnitude-frequency, epicentral distance and soft-sediment deformation in sedimentary basins, Sedimentary Geol., 46, 67–75. Amitrano, D., 2003. Brittle-ductile transition and associated seismicity: experimental and numerical studies and relationship with the b-value, J. geophys. Res., 108(B1), 2044, doi:10.1029/2001JB000680. Amitrano,D.&Helmstetter, A., 2006. Brittle creep, damage and time to failure in rocks, J. geophys. Res, 111, B11201, doi:10.1029/2005JB004252. DeMets, C., Gordon, R.G., Argus, D.F. & Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21(20), 2191–2194. Eberhart-Phillips, D. & Reyners, M., 1997. Continental subduction and three-dimensional crustal structure: the northern South Island, New Zealand, J. geophys. Res., 102, 11 843–11 861. Eberhart-Phillips, D., Reyners, M., Chadwick, M. & Chiu, J.-M., 2005. Crustal heterogeneity and subduction processes: 3-D Vp, Vp/Vs and Q in the southern North Island, New Zealand, Geophys. J. Int., 162, 270–288. Gerstenberger, M., Wiemer, M. & Giardini, D., 2001. A systematic test of the hypothesis that the b-value varies with depth in California, Geophys. Res, Lett., 28, 57–60. Grgic, D. & Amitrano, D., 2009. Creep of porous rocks and associated acoustic emission under differenthydrous conditions, J. geophys. Res., 114(B10201), doi:10.1029/2006JB004881. Gutenberg, B.&Richter, C.F., 1944. Frequency of earthquakes in California, Bull. seism. Soc. Am., 34, 185–188. Habermann, R.E., 1983. Teleseismic detection in the Aleutian Island arc, J. geophys. Res., 88, 5056–5064. Holt, W.E. & Haines, A.J., 1995. The kinematics of northern South Island, New Zealand, determined from geologic strain rates, J. geophys. Res., 100, 17 991–18 010. Ishimoto, M. & Iida, K., 1939. Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthq. Res. Inst. Tokyo Univ., 17, 443–478. Jing-Yi, L., Sibuet, J. & Hsu, S., 2008. Variations of b-values at the western edge of the Ryukyu subduction zone, north-east Taiwan, Terra Nova, 20, 150–153. Kirby, S.H., 1995. Interslab earthquakes and phase changes in subducting lithosphere, Rev. Geophys., 33, 287–297. Lockner,D., 1993. The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(7), 883–899. Lockner, D. & Byerlee, J., 1991. Precursory AE patterns leading to rock fracture, in Proceedings of the Fifth Conference on Acoustic Emission and Micro-Seismicity in Geological Structures and Materials, pp. 45–58, ed. Hardy, P.A., State University Trans Tech Publication, Clausthal- Zellerfeld, Germany. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A. & Sidorin, A., 1991. Quasi-static fault growth and shear fracture energy in granite, Nature, 350, 39–42. Main, I., Meredith, P.&Jones, C., 1989. A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophys. J. Int., 96, 131–138. Mekkawi,M., Grasso, J.-R.&Schnegg, P.A., 2004.Along-lasting relaxation of seismicity at Aswan Reservoir, Egypt, 1982–2001, Bull. seism. Soc. Am., 94, 479–492, doi:10.1785/0120030067. Meredith, P., Main, I. & Jones, C., 1990. Temporal variation in seismicity during quasi-static and dynamic failure, Tectonophysics, 175, 249–268. Mogi, K., 1962. Magnitude-frequency relation for elastic shocks accompanying fracture of various materials and some related problems in earthquakes, Bull. Earthq. Res. Inst. Univ. Tokyo, 40, 831–853. Mori, J. & Abercombie, R.E., 1997. Depth dependence of earthquake frequency-magnitude distributions in California: implication for rupture initiation, J. geophys. Res., 102(B7), 15 081–15 090. Mortimer,N., 2004. NewZealand’s geological foundations, Gondwana Res., 7, 261–272. Murru, M., Montuori, C., Wyss, M. & Privitera, E., 1999. The locations of magma chamber at Mt. Etna, Italy, mapped by b values, Geophys. Res. Lett., 26, 2553–2556. Murru, M., Montuori, C., Console, R. & Lisi, A., 2005. Mapping of the bvalue anomalies beneath Mt. Etna, Italy, during July–August 2001 lateral eruption, Geophys. Res. Lett., 32, L05309, doi:10.1029/2004GL021545. Murru, M., Console, R., Falcone, G., Montuori, C. & Sgroi, T., 2007. Spatial mapping of the b-value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005, J. geophys. Res., 112, B12303, doi:10.1029/2006JB004791. Novelo-Casanova,D.A., Berg, E., Hsu,V.&Helsley, C.E., 1985. Time–space variation of seismic S-wave coda attenuation (Qc-1) and magnitude distribution (b-values) for the Petatlan earthquake, Geophys. Res. Lett., 12, 789–792. Reyners, M. & Eberhart-Phillips, D., 2009. Small earthquakes provide insight into plate coupling and fluid distribution in the Hikurangi subduction zone, New Zealand, Earth planet. Sci. Lett., 282, 299–305. Reyners, M., Robinson, R. & McGinty, P., 1997. Plate coupling in the northern South Island and southernmost North Island, New Zealand, as illuminated by earthquake focal mechanisms, J. geophys. Res., 102(B7), 15 197–15 210. Scholz, C.H., 1968. The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes, Bull. seism. Soc. Am., 58, 399–415. Schorlemmer, D.&Wiemer, S., 2005. Microseismicity data forecast rupture area, Nature, 434, 1086, doi:10.1038/4341086a. Schorlemmer, D., Neri, G.,Wiemer, S. & Mostaccio, A., 2003. Stability and significance tests for b-value anomalies: example from the Tyrrhenian Sea, Geophys. Res. Lett., 30(6), 1835, doi:10.1029/2003GL017335. Schorlemmer, D., Wiemer, S. & Wyss, M., 2004. Earthquake statistics at Parkfield: 1. Stationarity of b-values, J. geophys. Res., 109, B12307, doi:10.1029/2004JB003234. Shi, Y. & Bolt, B., 1982. The standard error of the magnitude frequency b-value, Bull. seism. Soc. Am., 72, 1677–1687. Sue, C., Grasso, J.R., Lahaie, F. & Amitrano, D., 2002. Mechanical behaviour of western Alpine structures inferred from statistical analysis of seismicity, Geophys. Res. Lett., 29, 1224, doi:10.1029/2001GL014050. Utsu, T., 1971. Aftershocks and earthquakes statistics (III), analysis of the distribution of earthquakes in magnitude, time and space with special considerations to clustering characteristics of earthquakes occurrence, J. Fac. Sci. Hokkaido Univ. Japan VII, 3, 379–441. Utsu, T., 1992. On seismicity, in Mathematical Seismology (VII), Coop. Res. Rep. Inst. Stat. Math., Tokyo, 34, 139–157. Van Stiphout, T., Kissling, E., Wiemer, S. & Ruppert, N., 2009. Magmatic processes in the Alaska subduction zone by combined 3-D b value imaging and targeted seismic tomography, J. geophys. Res, 114, B11302, doi:10.129/2008JB005958. Wiemer, S., 2001. A software package to analyze seismicity: ZMAP, Seism. Res. Lett., 72, 373–382. Wiemer, S. & Benoit, J., 1996. Mapping the b-value anomaly at 100 km depth in Alaska and New Zealand subduction zones, Geophys. Res. Lett., 23, 1557–1560. Wiemer, S. & Wyss, M., 2000. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. seism. Soc. Am., 90, 859–869. Wiemer, S. &Wyss, M., 2002. Mapping spatial variability of the frequencymagnitude distribution of earthquakes, Adv. Geophys., 45, 259–302. Wyss, M., Nagamine, K., Klein, F.W. & Wiemer, S., 2001. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: evidence for the distribution of magma below Kilauea’s East Rift Zone, J. Volc. Geotherm. Res., 106, 23–37. Wyss, M., Pacchiani, F., Deschamps, A. & Patau, G., 2008. Mean magnitude variations of earthquakes as a function of depth: different crustal stress distribution depending on tectonic setting, Geophys. Res. Lett., 35, L01307, doi:10.1029/2007GL031057.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorMontuori, C.en
dc.contributor.authorFalcone, G.en
dc.contributor.authorMurru, M.en
dc.contributor.authorThurber, C.en
dc.contributor.authorReyners, M.en
dc.contributor.authorEberhart-Phillips, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geoscience, University of Wisconsin-Madison, Madison, WI, USAen
dc.contributor.departmentGNS Science, Lower Hutt, New Zealanden
dc.contributor.departmentGNS Science, Lower Hutt, New Zealand and University of California, Davis, CA, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.dept7Rensselaer Polytechnic Institute, USA-
crisitem.author.deptGNS Science, Lower Hutt, New Zealand-
crisitem.author.deptGNS Science, Lower Hutt, New Zealand and University of California, Davis, CA, USA-
crisitem.author.orcid0000-0001-8079-8451-
crisitem.author.orcid0000-0002-2554-4421-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf811.57 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

9
checked on Feb 10, 2021

Page view(s) 50

360
checked on Apr 17, 2024

Download(s)

42
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric