Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6402
DC FieldValueLanguage
dc.contributor.authorallFrank, T. D.; Department of Geosciences, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USAen
dc.contributor.authorallGui, Z.; Department of Geosciences, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USAen
dc.contributor.authorallANDRILL SMS Science Team, Antarctica; Antarctic Drilling Project, Southern McMurdo Sound Project, ANDRILL Science Management Offi ce, 126 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0341, USAen
dc.contributor.authorallANDRILL SMS Science Team, Antarctica; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2010-12-16T11:07:39Zen
dc.date.available2010-12-16T11:07:39Zen
dc.date.issued2010-07en
dc.identifier.urihttp://hdl.handle.net/2122/6402en
dc.description.abstractSampling of interstitial fluids during deep coring in southern McMurdo Sound, Antarctica, revealed the presence of seawater-sourced, hypersaline brine at depths >200 m below the sea-floor. Na-Cl-Br and SO4-Cl-Br relationships are consistent with a concentration mechanism that involves the removal of pure H2O as ice and precipitation of mirabilite (Na2SO4·10H2O) during progressive freezing of seawater. The brine is in Neogene subglacial, glacimarine, and marine facies that record advance and retreat of glaciers through the Ross Sea embayment. In this environment, sea ice formation in semi-isolated marine basins that occupied flexural troughs along ice sheet margins produced dense brines that sank and infiltrated the permeable subglacial sediment. Repeated cycles of glacial advance and retreat provided multiple opportunities for batches of seawater to be transformed into brine that now is in the subsurface of southern McMurdo Sound. Results demonstrate the feasibility of brine formation via seawater freezing and attest to the potential of a cryogenic origin for subsurface brines in high-latitude regions of the Northern Hemisphere, as proposed by some workers.en
dc.language.isoEnglishen
dc.publisher.nameGeological Society of Americaen
dc.relation.ispartofGeologyen
dc.relation.ispartofseries7 / 38 (2010)en
dc.subjectANDRILLen
dc.subjectSMS Projecten
dc.subjectinterstitial fluidsen
dc.subjecthypersaline brineen
dc.titleCryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarcticaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber587-590en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.identifier.doi10.1130/G30849.1en
dc.relation.referencesAndrews, J.T., 1975, Glacial systems: An approach to glaciers and their environments: North Scituate, Massachusetts, Duxbury Press, 191 p. Bein, A., and Arad, A., 1992, Formation of saline groundwaters in the Baltic region through freezing of seawater during glacial periods: Journal of Hydrology, v. 140, p. 75–87, doi: 10.1016/0022-1694(92)90235-N. Bottomley, D., Conrad, G.D., and Raven, K.G., 1994, Saline groundwater and brines in the Canadian Shield: Geochemical and isotopic evidence for a residual evaporite brine component: Geochimica et Cosmochimica Acta, v. 58, p. 1483–1489, doi: 10.1016/0016-7037(94)90551-7. Bottomley, D.J., Katz, A., Chan, L.H., Starinsky, A., Douglas, M., Clark, I.D., and Raven, K.G., 1999, The origin and evolution of Canadian Shield brines: Evaporation or freezing of sea-water? New lithium isotope and geochemical evidence from the Slave craton: Chemical Geology, v. 155, p. 295–320, doi: 10.1016/S0009-2541(98)00166-1. Boulton, G.S., Caban, P.E., and van Gijssel, K., 1995, Groundwater flow beneath ice sheets: Part I—Large-scale patterns: Quaternary Science Reviews, v. 14, p. 545–562, doi: 10.1016/0277-3791(95)00039-R. Craig, H., and Gordon, L.I., 1965, Deuterium and oxygen-18 variations in the ocean and the marine atmosphere, in Tongiorgi, E., ed., Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures: Pisa, Italy, Lischi and Figli, p. 9–130. Fielding, C.R., Naish, T.R., Woolfe, K.J., and Lavelle, M.A., 2000, Facies analysis and sequence stratigraphy of CRP-2/2A, Victoria Land Basin, Antarctica, in Barrett, P.J., and Ricci, C.A., eds., Studies from the Cape Roberts Project Ross Sea, Antarctica, Part I: Terra Antartica, v. 7, p. 323–338. Fielding, C.R., Whittaker, J., Henrys, S.A., Wilson, T.J., and Naish, T.R., 2008, Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic, and glacial history: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 260, p. 8–29, doi: 10.1016/j.palaeo.2007.08.016. Fielding, C.R., and 13 others, 2010, Sedimentology and stratigraphy of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica, in Harwood, D.M., et al., eds., Studies from the ANDRILL Southern Mc-Murdo Sound Project, Antarctica: Terra Antartica, v. 15 (in press). Florindo, F., Harwood, D.M., Levy, R.H., and the SMS Project Science Team, 2008, ANDRILL success during the 4th International Polar Year: Scientific Drilling, v. 6, p. 29–31. Frape, S., Fritz, P., and McNutt, R., 1984, Water-rock interaction and chemistry of groundwaters from the Canadian Shield: Geochimica et Cosmochimica Acta, v. 48, p. 1617–1627, doi: 10.1016/0016-7037(84)90331-4. Garlick, G.D., and Dymond, J.R., 1970, Oxygen isotope exchange between volcanic material and ocean water: Geological Society of America Bulletin, v. 81, p. 2137–2142, doi: 10.1130/0016-7606(1970)81[2137:OIEBVM]2.0.CO;2. Greene, S., Battye, N., Clark, I., Kotzer, T., and Bottomley, D., 2008, Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic sea-water origin mixed with glacial meltwater and Holocene recharge: Geochimica et Cosmochimica Acta, v. 72, p. 4008–4019, doi: 10.1016/j.gca.2008.05.058. Herut, B., Starinsky, A., Katz, A., and Bein, A., 1990, The role of seawater freezing in sub-surface brines: Geochimica et Cosmochimica Acta, v. 54, p. 13–21, doi: 10.1016/0016-7037(90)90190-V. McCaffrey, M.A., Lazar, B., and Holland, H.D., 1987, The evaporation path of seawater and the coprecipitation of Br– and K+ with halite: Journal of Sedimentary Petrology, v. 57, p. 928–937. McKay, R., Browne, G., Carter, L., Cowan, E., Dunbar, G., Krissek, L., Naish, T., Powell, R., Reed, J., Talarico, F., and Wilch, T., 2009, The stratigraphic signature of the late Cenozoic Antarctic ice sheets in the Ross Embayment: Geological Society of America Bulletin, v. 121, p. 1537–1561, doi: 10.1130/B26540.1. Nelson, K.H., and Thompson, T.G., 1954, Deposition of salts from seawater by frigid concentration: Journal of Marine Research, v. 13, p. 166–182. Panter, K.S., and 15 others, 2010, Petrologic and geochemical composition of the AND-2A Core, ANDRILL SMS Project, Antarctica, in Harwood, D., et al., eds., Studies from the ANDRILL Southern McMurdo Sound Project, Antarctica: Terra Antartica, v. 15 (in press). Starinsky, A., and Katz, A., 2003, The formation of natural cryogenic brines: Geochimica et Cosmochimica Acta, v. 67, p. 1475–1484, doi: 10.1016/S0016-7037(02)01295-4. Stewart, M.K., 1974, Hydrogen and oxygen isotope studies on the McMurdo ice shelf, Antarctica: New Zealand Journal of Geology and Geophysics, v. 18, p. 49–64. Talbot, C.J., 1999, Ice ages and nuclear waste isolation: Engineering Geology, v. 52, p. 177–192, doi: 10.1016/S0013-7952(99)00005-8. Walcott, R.I., 1970, Isostatic response to loading of the crust in Canada: Canadian Journal of Earth Sciences, v. 7, p. 716–734, doi: 10.1139/e70-070. Wooster, W.S., Lee, A.J., and Dietrich, G., 1969, Redefinition of salinity: Limnological Oceanography, v. 14, p. 437–438.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorFrank, T. D.en
dc.contributor.authorGui, Z.en
dc.contributor.authorANDRILL SMS Science Team, Antarcticaen
dc.contributor.authorANDRILL SMS Science Team, Antarcticaen
dc.contributor.departmentDepartment of Geosciences, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USAen
dc.contributor.departmentDepartment of Geosciences, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USAen
dc.contributor.departmentAntarctic Drilling Project, Southern McMurdo Sound Project, ANDRILL Science Management Offi ce, 126 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0341, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geosciences, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA-
crisitem.author.deptDepartment of Geosciences, 214 Bessey Hall, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0340, USA-
crisitem.author.dept0-
crisitem.author.dept0-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Frank_Geology-2010.pdfmain article826.31 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

22
checked on Feb 10, 2021

Page view(s) 20

285
checked on Apr 17, 2024

Download(s)

27
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric