Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6400
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDel Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallIezzi, G.; Università G. d'Annunzioen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-12-16T11:01:00Zen
dc.date.available2010-12-16T11:01:00Zen
dc.date.issued2010-05-25en
dc.identifier.urihttp://hdl.handle.net/2122/6400en
dc.description.abstractThe compositional variation of clinopyroxene and the partitioning ofmajor elements between clinopyroxene and melt are estimated as a function of the cooling rate. Clinopyroxenes were crystallized under variable cooling regimes (15, 9.4, 3, 2.1, and 0.5 °C/min from1250 down to 1000 °C) and at isothermal conditions of 1000 °C from a basaltic composition at a pressure of 500 MPa under anhydrous and hydrous (H2O=1.3 wt.%) conditions. The clinopyroxene chemistry shows that, as the cooling rate increases, crystals are progressively depleted in Ca,Mg, Fe2+ and Si and enriched inNa, Fe3+, Al (mainlyAlIV), and Ti. Di andHd versus CaTs and CaFeTs forma continuous binary solid solution characterized by higher amounts of tschermakitic componentswith increasing cooling rate. Two parameters (DH=Di+Hd and TE=CaTs+CaFeTs+En) are calculated to describe the effect of cooling rate on the clinopyroxene composition. The variation of DH/TE with increasing cooling rate evidences the kinetic process induced by rapid cooling in basic rocks under hydrous and anhydrous conditions. Dynamic crystallization conditions affect the partitioning of major elements between clinopyroxene and melt; with increasing cooling rate, the value of crystal–melt partition coefficient departs from that obtained at the isothermal condition. However, in spite of these variations, the values of cpx–meltKdFe–Mg remain almost constant. Therefore, the Fe2–Mg exchange between clinopyroxene and melt is not suitable to prove the (dis)equilibrium conditions in basaltic coolingmagmas, giving rise to possiblemismatches in the application of thermobarometers. The results of our study are consistentwith that observed at themargin of dikes or inthe exterior portions of lavas, where the cooling rate is maximized and disequilibrium compositions of clinopyroxene have been found.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofLithosen
dc.relation.ispartofseries/118 (2010)en
dc.subjectcooling rateen
dc.subjectclinopyroxeneen
dc.titleDependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometryen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber302-312en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1016/j.lithos.2010.05.006en
dc.relation.referencesBaginski, B., Dzierzanowski, P., Macdonald, R., Upton, B.G.J., 2009. Complex relationships among coexisting pyroxenes: the Paleogene Eskdalemuir dyke, Scotland.Mineralogical Magazine 73, 929–942. Blundy, J., Cashman, K.V., 2008. Petrologic Reconstruction of Magmatic System Variables and Processes. In: Putirka, K.D., Tepley, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes: Reviews in Mineralogy and Geochemistry, 69, pp. 179–239. Bowen, N.L., 1914. The ternary system: diopside–forsterite–silica. American Journal of Science 38, 207–264. Brandeis, G., Jaupart, C., Allegre, C.J., 1984. Nucleation crystal growth and the thermal regime of cooling magmas. Journal of Geophysical Research 89, 10161–10177. Canon-Tapia, E., Merle, O., 2006. Dyke nucleation and early growth from pressurized magma chambers: insights from analogue models. Journal of Volcanology and Geothermal Research 158, 207–220. Cashman, K.V., Thornber, C.R., Kauahikaua, J.P., 1999. Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to 'a'a. Bulletin of Volcanology 61, 306–323. Chistyakova, S., Latypov, R., 2009. On the development of internal chemical zonation in small mafic dykes. Geological Magazine 147, 1–12. Clauser, C., Huenges, E., 1995. Thermal conductivity of rocks and minerals. In: Ahrens, T.J. (Ed.), Rock Physics and Phase Relations — A Handbook of Physical Constants: AGU Reference Shelf, 3, pp. 105–126. Coish, R.A., Taylor, L.A., 1979. The effect of cooling rate on texture and pyroxene chemistry in DSDP Leg 34 basalt: a microprobe study. Earth Planetary Science Letters 42, 389–398. Couch, S., Sparks, R.S.J., Carroll, M.R., 2003. The kinetics of degassing-induced crystallization at Soufriere Hills volcano, Montserrat. Journal of Petrology 44, 1477–1502. Deer, W.A., Howie, R.A., Zussman, J., 1978. Rock-forming minerals, 2nd ed. Single-chain Silicates, vol. 2A. Longman, London. Del Gaudio, P., Mollo, S., Ventura, G., Iezzi, G., Taddeucci, J., Cavallo, A., 2010. Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chemical Geology 270, 164–178. Dunbar, N.W., Jacobs, G.K., Naney, M.T., 1995. Crystallization processes in an artificial magma: variations in crystal shape, growth rate and composition with melt cooling history. Contribution to Mineralogy and Petrology 120, 412–425. Etzel, K., Benisek, A., Dachs, E., Cemic, L., 2007. Thermodynamic mixing behavior of synthetic Ca-Tschermak–diopside pyroxene solid solutions: I. Volume and heat capacity of mixing. Physics and chemistry of Minerals 34, 733–746. Faraone, D., Molin, G., Zanazzi, P.F., 1988. Clinopyroxene from Vulcano (Aeolian Islands, Italy): crystal chemistry and cooling history. Lithos 22, 113–126. Faure, F., Schiano, P., 2004. Crystal morphologies in pillow basalts: implications for midocean ridge processes. Earth and Planetary Science Letters 220, 331–344. Gamble, R.P., Taylor, L.A., 1980. Crystal/liquid partitioning in augite: effects of cooling rate. Earth and Planetary Science Letters 47, 21–33. Geschwind, C.H., Rutherford, M.J., 1995. Crystallization of microlites during magma ascent; the fluid mechanics of 1980–1986 eruptions at Mount St. Helens. Bulletin of Volcanology 57, 356–370. Grove, T.L., Bence, A.E., 1977. Experimental study of pyroxene–liquid interaction in quartz-normative basalt 15597. Proceedings of Lunar and Planetary Science Conference, 8th, pp. 1549–1579. Grove, T.L., Bence, A.E., 1979. Crystallization kinetics in a multiply saturated basalt magma: an experimental study of Luna 24 ferrobasalt. Proceedings of Lunar and Planetary Science Conference, 10th, pp. 439–478. Grove, T.L., Raudsepp, M., 1978. Effects of kinetics on the crystallization of quartznormative basalt 15597: an experimental study. Proceedings of Lunar and Planetary Science Conference, 9th, pp. 585–599. Gudmundsson, A., 1990. Emplacement of dikes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics 176, 257–275. Hammer, J.E., 2006. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth and Planetary Science Letters 248, 618–637. Hammer, J., 2008. Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka, K.D., Tepley, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes: Reviews in Mineralogy and Geochemistry, 69, pp. 9–59. Higgins, M.D., 1998. Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development. Journal of Petrology 39, 1307–1323. Hofmeister, A.M., Whittington, A.G., Petermann, M., 2009. Transport properties of high albite crystals, near-endmember feldspar and pyroxene glasses, and their melts to higher temperature. Contributions to Mineralogy and Petrology 158, 381–400. Iezzi, G., Mollo, S., Ventura, G., Cavallo, A., Romano, C., 2008. Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chemical Geology 253, 91–101. Kirkpatrick, R.J., 1981. Kinetics of crystallization of igneous rocks. Reviews in Mineralogy and Geochemistry 8, 321–395. Kress, V.C., Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology 108, 82–92. Lesher, C.E., Cashman, K.V., Mayfield, J.D., 1999. Kinetic controls on crystallization of Tertiary North Atlantic basalt and implications for the emplacement and cooling history of lava at Site 989, Southeast Greenland rifted margin. In: Larsen, H.C., Duncan, R.A., Allan, J.F., Brooks, K. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 163, pp. 135–148. Lipamam, P.W., Banks, N.G., Rhodes, J.M., 1985. Gas-release induced crystallization of 1984 Mauna Loa magma, Hawaii, and effects on lava rheology. Nature 317, 604–607. Lofgren, G.E., 1983. Effect of heterogeneous nucleation behaviour on basaltic textures: a dynamic crystallization study. Journal of Petrology 24, 229–255. Lofgren, G.E., Huss, G.R., Wasserburg, G.J., 2006. An experimental study of traceelement partitioning between Ti–Al–clinopyroxene and melt: equilibrium and kinetic effects including sector zoning. American Mineralogist 91, 1596–1606. Mevel, C., Velde, D., 1976. Clinopyroxenes in Mesozoic pillow lavas from the French Alps: influence of cooling rate on compositional trends. Earth and Planetary Science Letters 32, 158–164. Mollo, S., Gaeta, M., Freda, C., Di Rocco, T., Misiti, V., Scarlato, P., 2010. Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114, 503–514. Mungall, J.E., 2007. Crustal contamination of picritic magmas during transport through dikes: the Expo Intrusive Suite, Cape Smith Fold Belt, New Quebec. Journal of Petrology 48, 1021–1039. Nimis, P., 1995. A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contributions to Mineralogy and Petrology 121, 115–125. Nimis, P., Ulmer, P., 1998. Clinopyroxene geobarometry of basic magmas: an expanded structural geobarometer for anhydrous and hydrous systems. Contributions to Mineralogy and Petrology 133, 122–135. Petermann, M., Whittington, A.G., Hofmeister, A.M., Spera, F.J., Zayak, J., 2008. Transport properties of low-sanidine single crystals, glasses and melts at high temperature. Contributions to Mineralogy and Petrology 155, 689–702. Pichavant, M., Costa, F., Burgisser, A., Scaillet, B., Martel, C., Poussineau, S., 2007. Equilibration scales in silicic to intermediate magmas—implications for experimental studies. Journal of Petrology 48, 1955–1972. Pupier, E., Duchene, S., Toplis, M.J., 2008. Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contributions to Mineralogy and Petrology 155, 555–570. Putirka, K., 1999. Clinopyroxene+liquid equilibria. Contributions to Mineralogy and Petrology 135, 151–163. Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. In: Putirka, K.D., Tepley, F. (Eds.), Minerals, Inclusions, and Volcanic Processes: Reviews in Mineralogy and Geochemistry, 69, pp. 61–120. Putirka, K., Johnson, M., Kinzler, R., Walker, D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene–liquid equilibria, 0–30 kbar. Contributions to Mineralogy and Petrology 123, 92–108. Putirka, K., Ryerson, F.J., Mikaelian, H., 2003. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene+liquid equilibria. American Mineralogist 88, 1542–1554. Roeder, P.L., Emslie, R.F., 1970. Olivine–liquid equilibrium. Contributions to Mineralogy and Petrology 29, 275–289. Schiavi, F., Walte, N., Keppler, H., 2009. First in situ observation of crystallization processes in a basaltic–andesitic melt with the moissanite cell. Gelogy 37, 963–966. Schwandt, C.S., McKay, G.A., 2006. Minor- and trace-element sector zoning in synthetic enstatite. American Mineralogist 91, 1607–1615. Smith, D., Lindsley, D.H., 1971. Stable and metastable augite crystallization trends in a single basalt flow. American Mineralogist 56, 225–233. Stelling, J., Botcharnikov, R.E., Beermann, O., Nowak, M., 2008. Solubility of H2O- and chlorine-bearing fluids in basaltic melt of Mount Etna at T=1050–1250 °C and P=200 MPa. Chemical Geology 256, 102–110. Tarney, J., Weaver, B.L., 1987. Mineralogy, petrology and geochemistry of the Scourie dykes: petrogenesis and crystallization processes in dykes intruded at depth. Geological Society, London, Special Publications 27, 217–233. Tsuchiyama, A., 1985. Crystallization kinetics in the system CaMgSi2O6–CaAl2Si2O8: development of zoning and kinetics effects on element partitioning. American Mineralogist 70, 474–486. Ujike, O., 1982. Microprobe mineralogy of plagioclase, clinopyroxene and amphibole as records of cooling rate in the Shirotori-Hiketa dike swarm, northeastern Shikoku, Japan. Lithos 15, 281–293.Walker, G.P.L., Eyre, P.R., 1995. Dike complexes in American Samoa. Journal of Volcanology and Geothermal Research 69, 241–254. Watson, E.B., 1994. Diffusion in volatile-bearing magmas. In: Carroll, M.R., Holloway, J.R. (Eds.), Volatiles in Magmas: Reviews in Mineralogy, 30, pp. 371–411. Watson, E.B., Baker, D.R., 1991. Chemical diffusion in magmas: an overview of experimental results and geochemical applications. In: Perchuk, L.L., Kushiro, I. (Eds.), Physical Chemistry of Magmas: Advances in Physical Chemistry, 9, pp. 99–119. Zieg, M.J., Lofgren, G.E., 2006. An experimental investigation of texture evolution during continuous cooling. Journal of Volcanology and Geothermal Research 154, 74–88.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMollo, S.en
dc.contributor.authorDel Gaudio, P.en
dc.contributor.authorVentura, G.en
dc.contributor.authorIezzi, G.en
dc.contributor.authorScarlato, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità G. d'Annunzioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità degli studi G. D'annunzio, Chieti Pescara, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-0977-1237-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
mollo clinopyroxene.pdfMain article1.37 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

68
checked on Feb 10, 2021

Page view(s) 50

289
checked on Apr 24, 2024

Download(s)

32
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric