Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/636
DC FieldValueLanguage
dc.contributor.authorallDalla Via, G.; Università degli Studi di Milano, Dipartimento di Scienze della Terra, sezione di Geofisicaen
dc.contributor.authorallSabadini, R.; Università degli Studi di Milano, Dipartimento di Scienze della Terra, sezione di Geofisicaen
dc.contributor.authorallDe Natale, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPingue, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2006-01-26T11:43:01Zen
dc.date.available2006-01-26T11:43:01Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/636en
dc.description.abstractPostseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.en
dc.format.extent419 bytesen
dc.format.extent623618 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries110, B06311en
dc.subjectLithospheric rheologyen
dc.subjectIrpinia earthquakeen
dc.titleLithospheric rheology in southern Italy inferred from postseismic viscoelastic relaxation following the 1980 Irpinia earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-16en
dc.identifier.URLwww.agu.orgen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.identifier.doi10.1029/2004JB003539en
dc.relation.referencesArca, S., V. Bonasia, F. Pingue, R. Scarpa, R. Gaulon, and J. C. Ruegg (1983), Ground movements and faulting mechanism associated to the November 23, 1980 southern Italy earthquake, Boll. Geod. Sci. Affini, 42, 137–147. Bernard, P., A. Zollo, C. I. Trifu, and A. Herrero (1993), Details of the rupture kinematics and mechanism of the 1980 Irpinia earthquake: New results and remaining questions, Ann. Geofis., XXXVI, 71–80. Bu¨rgmann, R., S. Ergintav, P. Segall, E. H. Hearn, S. McClusky, R. E. Reilinger, H. Woith, and J. Zschauj (2002), Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture, Bull. Seismol. Soc. Am., 92(1),126– 137. Caporali, A., S. Martin, M. Massironi (2003), Avarage strain rate in the Italian crust inferred from a permanent GPS network- II. Strain rate versus seismicity and structural geology, Geophys. J. Int., 155(1), 254– 268, doi:10.1046/j.1365-246X.2003.02035.x. Constable, S. C., R. L. Parker, and C. G. Constable (1987), Occam’s inversion: A pratical algorithm for generating smooth models from electromagnetic sounding data, Geophysics, 52(3), 289–300. Cotecchia, V. (1986), Ground deformations and slope instability produced by the earthquake of 23 November 1980 in Campania and Basilicata, Geol. Appl. Idrogeol., 21(5), 31– 100. Dalla Via, G., G. De Natale, C. Troise, F. Pingue, F. Obrizzo, R. Riva, and R. Sabadini (2003), First evidence of post-seismic deformation in the central Mediterranean: Crustal viscoelastic relaxation in the area of the 1980 Irpinia earthquake (southern Italy), Geophys. J. Int., 154(3), F9– F14, doi:10.1046/ j.1365-246X.2003.02031.x. deGroot-Hedlin, C., and S. Constable (1990), Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55(12), 1613– 1624. De Natale, G. (1989), Inversion of ground deformation data for variable slip fault models, Software Eng. Workstations, 5, 140– 150. Deng, J., M. Gurnis, H. Kanamori, E. Hauksson (1998), Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake, Science, 282, 1689–1692. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297– 356. Friederich, W., and J. Dalkolmo (1995), Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green’s function in the frequency domain, Geoph. J. Int., 136, 537–550. Giardini, D., A. Basili, and E. Boschi (1996), Applying the relative hypocentre location approach: where was the 1980 November 23 Irpinia earthquake?, Geophys. J. Int., 127, 605– 615. Marone, C., C. H. Scholz, and R. Bilham (1991), On the mechanics of earthquake afterslip, J. Geophys. Res., 96, 8441–8452. Mostardini, P., and S. Merlini (1986), Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale, Mem. Soc. Geol. Ital., 35, 177– 202. Pantosti, D., and G. Valensise (1990), Faulting mechanism and complexity of the 23 November 1980, Campania-Lucania, earthquake, inferred from surface observations, J. Geophys. Res., 95, 15, 319– 15,341. Pantosti, D., and G. Valensise (1993), Source geometry and long-term behavior of the 1980, Irpinia earthquake fault based on field geologic observations, Ann. Geofis., XXXVI, 41– 49. Pantosti, D., G. D’addezio, and F. R. Cinti (1993), Paleoseismological evidence of repeated large earthquakes along the 1980 Irpinia earthquake fault, Ann. Geofis., XXXVI, 321– 330. Phinney, R. A., and R. Burridge (1973), Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics, Geophys. J. R. Astron. Soc., 34, 451– 487. Pingue, F., and G. De Natale (1993), Fault mechanism of the 40 seconds subevent of the 1980 Irpinia (southern Italy) earthquake from levelling data, Geophys. Res. Lett., 20(10), 911 – 914. Pingue, F., G. De Natale, and P. Briole (1993), Modeling of the 1980 Irpinia earthquake source: constraints from geodetic data, Ann. Geofis., XXXVI, 27– 40. Pollitz, F.F. (1997), Gravitational viscoelastic postseismic relaxation on a layered spherical Earth, J. Geophys. Res., 102, 17,921– 17,941. Pollitz, F. F. (2003), Transient rheology of the uppermost mantle beneath the Mojave Desert, California, Earth Planet. Sci. Lett., 215(1– 2), 89–104. Pollitz, F. F., R. Bu¨rgmann, and P. Segall (1998), Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake, J. Geophys. Res., 103, 26,975– 26,992. Pollitz, F. F., G. Peltzer, and R. Burgmann (2000), Mobility of continentall mantle:Evidence from postseismic geodetic observations following the 1992 Landers earthquake, J. Geophys. Res., 105, 8035–8054. Pollitz, F. F., C. Wicks, and W. Tatcher (2001), Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake, Science, 293, 1814– 1818. Ranalli, G., and D. C. Murphy (1987),Rheological stratification of the lithosphere, Tectonophy, 132, 281–295. Riva, R. E. M. (2004), Crustal rheology and postseismic deformation: Modeling and application to the Apennines, Ph.D. thesis, Delft Univ. of Technol., Delft, Netherlands. Riva, R. E. M., and L. L. A. Vermeersen (2002), Approximation method for hig-degree harmonics in normal mode modelling, Geophys. J. Int., 151(1), 309–313, doi:10.1046/j.1365-246X.2002.01754.x. Sabadini, R., and L. L. A. Vermeersen (2004), Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth Geophysics, Modern Approaches Geophys., vol. 30, Springer, New York. Sabadini, R., G. Di Donato, L. L. A. Vermeesen, R. Devoti, V. Luceri, and G. Bianco (2002), Ice mass loss in Antarctica and stiff lower mantle viscosity inferred from the long wavelength time dependent gravity field, Geophys. Res. Lett., 29(10), 1373, doi:10.1029/2001GL014016. Troise, C., G. De Natale, F. Pingue, and S. M. Petrazzuoli (1998), Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy), Geophys. J. Int., 134(3), 809–817, doi:10.1046/j.1365 246x.1998.00610.x. Wessel, P., and W. H. F. Smith (1990), Gridding with continuos curvature splines in tension, Geophysics, 55, 293– 305. Wessel, P., and W. H. F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU, 79(47), 579. Westaway, R. (1992), Seismic moment summation for historical earthquakes in Italy: Tectonic implications, J. Geophys. Res., 97, 15,437– 15,464.en
dc.description.fulltextpartially_openen
dc.contributor.authorDalla Via, G.en
dc.contributor.authorSabadini, R.en
dc.contributor.authorDe Natale, G.en
dc.contributor.authorPingue, F.en
dc.contributor.departmentUniversità degli Studi di Milano, Dipartimento di Scienze della Terra, sezione di Geofisicaen
dc.contributor.departmentUniversità degli Studi di Milano, Dipartimento di Scienze della Terra, sezione di Geofisicaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversit`a di Milano - Milan, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-2241-9892-
crisitem.author.orcid0000-0001-8391-2846-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Dalla Via.pdf609 kBAdobe PDF
agu.htm419 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

21
checked on Feb 10, 2021

Page view(s)

265
checked on Mar 27, 2024

Download(s)

77
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric