Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6363
DC FieldValueLanguage
dc.contributor.authorallGrassa, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCapasso, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallOliveri, Y.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallSollami, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallCarreira, P.; Instituto Tecnológico e Nuclear, Sacavém, Portugalen
dc.contributor.authorallCarvalho, M. R.; Faculdade de Ciências de Lisboa, Departamento de Geologia, CeGUL, Lisboa, Portugalen
dc.contributor.authorallMarques, J. M.; Instituto Superior Técnico, Lisboa, Portugalen
dc.contributor.authorallNunes, J. C.; Department of Geosciences, University of the Azores, Sao Miguel, Azores, Portugalen
dc.date.accessioned2010-12-15T11:39:11Zen
dc.date.available2010-12-15T11:39:11Zen
dc.date.issued2010-06en
dc.identifier.urihttp://hdl.handle.net/2122/6363en
dc.description.abstractA continuous-flow GC/IRMS technique has been developed to analyse δ15N values for molecular nitrogen in gas samples. This method provides reliable results with accuracy better than 0.15‰and reproducibility (1σ) within ±0.1‰ for volumes of N2 between 1.35 (about 56 nmol) and 48.9μL (about 2μmol). The method was tested on magmatic and hydrothermal gases as well as on natural gas samples collected from various sites. Since the analysis of nitrogen isotope composition may be prone to atmospheric contamination mainly in samples with low N2 concentration, we set the instrument to determine also N2 and 36Ar contents in a single run. In fact, based on the simultaneously determined N2/36Ar ratios and assuming that 36Ar content in crustal and mantle-derived fluids is negligible with respect to 36Ar concentration in the atmosphere, for each sample, the degree of atmospheric contamination can be accurately evaluated. Therefore, the measured δ15N values can be properly corrected for air contamination.en
dc.language.isoEnglishen
dc.publisher.nameTaylor & Francisen
dc.relation.ispartofIsotopes in Environmental and Health Studiesen
dc.relation.ispartofseries2/46 (2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5664en
dc.subjectArgon-36en
dc.subjectisotope measurement and techniqueen
dc.subjectnitrogen-15en
dc.subjectvolcanic and hydrothermal gasen
dc.titleNitrogen isotopes determination in natural gas: analytical method and first results on magmatic, hydrothermal and soil gas samplesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber141–155en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1080/10256016.2010.491914en
dc.relation.references[1] B. Marty and F. Humbert, Nitrogen and Argon Isotopes in Oceanic Basalts, Earth Plan. Sci. Lett. 152, 101 (1997). [2] Y. Sano, N. Takahata,Y. Nishio, T.P. Fischer, and S.N. Williams, Volcanic Flux of Nitrogen from the Earth, Chem. Geol. 171, 263 (2001). [3] S. Inguaggiato, Y. Taran, F. Grassa, G. Capasso, R. Favara, N. Varley, and E. Faber, Nitrogen Isotopes in Thermal Fluids of a Forearc Region (Jalisco Block, Mexico): Evidence for Heavy Nitrogen from Continental Crust. Geochem. Geophys. Geosyst. 5, Q12003 (2004). [4] B. Marty and N. Dauphas The Nitrogen Record of Crust–Mantle Interaction and Mantle Convection from Archean to Present, Earth Plan. Sci. Lett. 206, 397 (2003). [5] Y. Sano, N. Takahata, Y. Nishio, and B. Marty, Nitrogen Recycling in Subduction Zones, Geophys. Res. Lett. 25, 2289 (1998). [6] M.M. Zimmer, T.P. Fischer, D.R. Hilton, G.E. Alvarado, Z.D. Sharp, and J.A. Walker, Nitrogen Systematics and Gas Fluxes of Subduction Zones: Insights from Costa Rica Arc Volatiles, Geochem. Geophys. Geosyst. 5, Q05J11 (2004). [7] L.E. Clor, T.P. Fischer, D.R. Hilton, Z.D. Sharp, and U. Hartono, Volatile and N Isotope Chemistry of the Molucca Sea Collision Zone: Tracing Source Components Along the Sangihe Arc, Indonesia, Geochem. Geophys. Geosyst. 6, Q03J14 (2005). [8] T.P. Fischer, N.C. Sturchio, J. Stix, G.Arehart, D. Counce, and S.N.Williams,The Chemical and Isotopic Composition of Fumarolic Gases and Spring Discharges from Galeras Volcano, Colombia, J. Volcanol. Geotherm. Res. 77, 229 (1997). [9] T.P. Fischer, N. Takahata, Y. Sano, H. Sumino, and D.H. Hilton, Nitrogen Isotopes of the Mantle: Insights from Mineral Separates, Geophys. Res. Lett. 32, L11305 (2005). [10] I.N. Tolstikhin and B. Marty, The Evolution of TerrestrialVolatiles:AView from Helium, Neon, Argon and Nitrogen Isotope Modeling, Chem. Geol. 147, 27 (1998). [11] T. Matsumoto, D. Pinti, J. Matsuda, and S. Umino, Recycled Noble Gas and Nitrogen in the Subcontinental Lithospheric Mantle: Implications from N–He–Ar in Fluid Inclusions of SE Australian Xenoliths, Geochem. J. 36, 209 (2002). [12] R.K. Mohapatra, D. Harrison, U. Ott, J.D. Gilmour, and M. Trieloff, Noble Gas and Nitrogen Isotopic Components in Oceanic Island Basalts, Chem. Geol. 266, 29 (2009). [13] C. Ballentine and B. Sherwood Lollar, Regional Groundwater Focusing of Nitrogen and Noble Gases into the Hugoton-Panhandle Giant Gas Field, USA, Geochim. Cosmochim. Acta 66, 2483 (2002). [14] K.A. Farley, R.J. Poreda andT.C. Onstott, Noble Gases in Deformed Xenoliths from an Ocean Island: Characterisation of a Metasomatic Fluid, in Noble Gas Geochemistry and Cosmochemistry, edited by J. Matsuda (Terra Scientific, Tokyo, 1994), pp. 159–178. [15] P.G. Burnard, D.W. Graham, and G. Turner, Vesicle-specific Noble Gas Analyses of ‘Popping Rock’: Implication for Primordial Noble Gases, Earth Sci. 276, 568 (1997). [16] A.O. Nier, A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon and Potassium, Phys. Rev. 77, 789 (1950). [17] M. Ozima, and F.A. Podosek, Noble Gas Geochemistry (Cambridge University Press, Cambrige, 1983). [18] W.F. Giggenbach and R.L. Gougel, Methods for the Collection and Analyses of Geothermal and VolcanicWater and Gas Samples (DSIR, Chemical Division, Petone, New Zealand, 1989). [19] R.F.Weiss, The Solubility of Nitrogen, Oxygen and Argon inWater and Seawater, Deep Sea Res. 17, 721 (1970). [20] F. Barberi, F. Innocenti, G. Ferrara, J.Keller, and L.Villari, Evolution of AeolianArcVolcanism (SouthernTyrrhenian Sea), Earth Planet. Sci. Lett. 21, 269 (1974). [21] M. Martelli, P.M. Nuccio, F.M. Stuart, R. Burgess, R.M. Ellam, and F. Italiano, Helium Strontium Isotopic Constrains on Mantle Evolution Beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 224, 295 (2004). [22] C. Beier, A. Stracke, and K.M. Haase, The Peculiar Geochemical Signatures of (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth Plan. Sci. Lett. 259, 186 (2007). [23] T. Elliott, J. Blichert-Toft, A. Heumann, G. Koetsier, and V. Forjaz, The Origin of Enriched Mantle Beneath São Miguel, Azores, Geochim. Cosmochim. Acta 71, 219 (2007). [24] P. Madureira, M. Moreira, J. Mata, and C.J. Allègre, Primitive Neon Isotopes inTerceira Island (Azores Archipelago), Earth Plan. Sci. Lett. 233, 429 (2005). [25] M. Moreira, R. Doucelance, B. Dupre, M. Kurz, and C.J. Allègre, Helium and Lead Isotope Geochemistry in the Azores Archipelago, Earth Plan. Sci. Lett. 169, 189 (1999). [26] P.M. Carreira, J.M. Marques, M.R. Carvalho, G. Capasso, and F. Grassa, Mantle-Derived Carbon in Hercynian Granites. Stable Isotopes Signatures and C/He Associations in the ThermomineralWaters, N-Portugal, J. Volcanol. Geotherm. Res. 189, 49 (2010). [27] A. Caracausi, R. Favara, F. Italiano, P.M. Nuccio, A. Paonita, and A. Rizzo, Active Geodynamics of the Central Mediterranean Sea: Tensional Tectonic Evidences in Western Sicily from Mantle-Derived Helium, Geophys. Res. Lett. 32, L04312 (2005); doi:10.1029/2004GL021608. [28] P. Allard, P. Jean-Baptiste,W. D’Alessandro, F. Parello, B. Parisi, and C. Flehoc, Mantle-Derived Helium and Carbon in Groundwaters and Gases of Mount Etna, Italy, Earth Plan. Sci. Lett. 148, 501 (1997). [29] W. D’Alessandro, L. Brusca, K. Kyriakopoulos, G. Michas, and G. Papadakis, Methana, the Westernmost Active Volcanic System of the South Aegean Arc (Greece): Insight from Fluids Geochemistry, J. Volcanol. Geotherm. Res. 178, 818 (2008).en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGrassa, F.en
dc.contributor.authorCapasso, G.en
dc.contributor.authorOliveri, Y.en
dc.contributor.authorSollami, A.en
dc.contributor.authorCarreira, P.en
dc.contributor.authorCarvalho, M. R.en
dc.contributor.authorMarques, J. M.en
dc.contributor.authorNunes, J. C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentInstituto Tecnológico e Nuclear, Sacavém, Portugalen
dc.contributor.departmentFaculdade de Ciências de Lisboa, Departamento de Geologia, CeGUL, Lisboa, Portugalen
dc.contributor.departmentInstituto Superior Técnico, Lisboa, Portugalen
dc.contributor.departmentDepartment of Geosciences, University of the Azores, Sao Miguel, Azores, Portugalen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptInstituto Tecnológico e Nuclear, Estrada Nacional n° 10, 2686-953 Sacavém, Portugal-
crisitem.author.deptUniversidade de Lisboa, Faculdade de Ciências, Departamento Geologia, Inst. D. Luís, Lisboa, Portugal-
crisitem.author.deptInstituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal-
crisitem.author.orcid0000-0001-5043-792X-
crisitem.author.orcid0000-0002-0890-7948-
crisitem.author.orcid0000-0002-5275-1311-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Nitrogen Azores.pdfMain article412.08 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

8
checked on Feb 10, 2021

Page view(s) 50

348
checked on Apr 24, 2024

Download(s)

47
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric