Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6349
DC FieldValueLanguage
dc.contributor.authorallCara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Giulio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMilana, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBordoni, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallHaines, J.; University of Cambridgeen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-12-14T15:22:22Zen
dc.date.available2010-12-14T15:22:22Zen
dc.date.issued2010-06-01en
dc.identifier.urihttp://hdl.handle.net/2122/6349en
dc.description.abstractHorizontal-to-vertical spectral ratios using ambient noise (HVNSR) are commonly used in site effects studies. In the practice, many operators assume stability over time of HVNSR and base their analyses on few very short time windows. The availability of a long period of continuous microtremor recording allowed us to analyze three months of data coming from a dense array experiment performed at Cavola, a village in northern Apennines. This condition offers a good opportunity to check the validity of the stability assumption and to investigate variations of the local ambient noise wave-field composition. The Cavola site is characterized by landslide sediments over stiffer materials with a moderate impedance contrast and by a complex morphology. An intense industrial activity in the village contributes to the generation of seismic noise. After identifying this noise source in the time series, we evaluate its effects on HVNSR. The results indicate that the spectral peak of HVNSR varies in amplitude and frequency, posing a warning about stability in time. Analyzing the spectra we identify the anthropic activity as responsible for changes in the composition of the noise wave field. These variations affect HVNSR, including peak frequency and also ground-motion polarization.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries3/100 (2010)en
dc.subjectnoise measurementsen
dc.subjectRayleigh wavesen
dc.subjectpolarizationen
dc.titleOn the Stability and Reproducibility of the Horizontal-to-Vertical Spectral Ratios on Ambient Noise: Case Study of Cavola, Northern Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1263-1275en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1785/0120090086en
dc.relation.referencesArai, H., and K. Tokimatsu (2000). Effects of Rayleigh and Love waves on microtremor H/V spectra, in 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000, paper 2232. Bard, P.-Y. (1998). Microtremor measurements: A tool for site effect estimation?, in Proc. of the 2nd International Symp. on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 1251–1279. Bonnefoy-Claudet, S. (2004). Nature du bruit de fond sismique: Implication pour les études des effets de site, Ph.D. Thesis, University Joseph Fourier, Grenoble, France (in French with English abstract). Bonnefoy-Claudet, S., F. Cotton, and P. Y. Bard (2006). The nature of noise wave-field and its applications for site effects studies — A literature review, Earth Sci. Rev. 79, no. 3–4, 205–227. Bonnefoy-Claudet, S., A. Köhler, C. Cornou, M. Wathelet, and P. Y. Bard (2008). Effects of Love waves on microtremor H/V ratio, Bull. Seismol. Soc. Am. 98, no. 1, 288–300. Bordoni, P., G. Di Giulio, J. A. Haines, F. Cara, G. Milana, and A. Rovelli (2010). Issues in choosing the references to use for spectral ratios from observations and modeling, at Cavola landslide, northern Italy, Bull. Seismol. Soc. Am. 100 (in press). Bordoni, P., J. Haines, G. Di Giulio, G. Milana, P. Augliera, M. Cercato, L. Martelli, F. Cara , and The Cavola Experiment Team (2007). Cavola experiment site: Geophysical investigations and deployment of a dense seismic array on a landslide, Ann. Geophys. 50, no. 5, 627–649. Bour, M., D. Fouissac, P. Dominique, and C. Martin (1998). On the use of microtremor recordings in seismic microzonation, Soil Dyn. Earthquake Eng. 17, 465–474. Capon, J. (1969). High-resolution frequency–wavenumber spectrum analysis, Proc. IEEE 57, no. 8, 1408–1419. Cara, F., G. Cultrera, R. M. Azzara, V. De Rubeis, G. Di Giulio, M. S. Giammarinaro, P. Tosi, P. Vallone, and A. Rovelli (2008). Microtremor measurements in the city of Palermo, Italy: Analysis of the correlation between local geology and damage, Bull. Seismol. Soc. Am. 98, no. 3, 1354–1372. Cara, F., G. Di Giulio, and A. Rovelli (2003). A study on seismic noise variations at Colfiorito, central Italy: Implications for the use of H/V spectral ratios, Geophys. Res. Lett. 30, no. 18, 1972, doi 10.1029/2003GL017807. Di Giulio, G., F. Cara, A. Rovelli, G. Lombardo, and R. Rigano (2009). Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mt. Etna (Italy), J. Geophys. Res. 114, B10308, doi 10.1029/2009JB006393. Dolenc, D., and D. Dreger (2005). Microseims observations in the Santa Clara Valley, California, Bull. Seismol. Soc. Am. 95, no. 3, 1137–1149. Fäh, D., F. Kind, and D. Giardini (2001). A theoretical investigation of average H/V ratios, Geophys. J. Int. 145, 535–549. Friedrich, A., F. Krüger, and K. Kingle (1998). Ocean-generated microseismic noise located with the Grafenberg array, J. Seism. 2, 47–64. Goldstein, P., D. Dodge, M. Firpo, and L. Minner (1999). SAC2000: Signal processing and analysis tools for seismologists and engineers, in The IASPEI International Handbook of Earthquake and Engineering Seismology, Part B, Ch. 85.5, W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (Editors), Academic Press, London. Guillier, B., J.-L. Chatelain, S. Bonnefoy-Claudet, and E. Haghshenas (2007). Use of ambient noise: From spectral amplitude variability to H/V stability, J. Earthquake Eng. 11, no. 6, 925–942. Jurkevics, A. (1988). Polarization analysis of three component array data, Bull. Seismol. Soc. Am. 78, 1725–1743. Konno, K., and T. Ohmachi (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bull. Seismol. Soc. Am. 88, no. 1, 228–241. La Rocca, M., D. Galluzzo, G. Saccorotti, S. Tinti, G. B. Cimini, and E. Del Pezzo (2004). Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. Seismol. Soc. Am. 94, no. 5, 1850–1867, doi 10.1785/012003238. Lachet, C., D. Hatzfeld, P.-Y. Bard, N. Theodulidis, C. Papaioannou, and A. Savvaidis (1996). Site effects and microzonation in the city of Thessaloniki (Greece). Comparison of different approaches, Bull. Seismol. Soc. Am. 86, no. 6, 1692–1703. Malischewky, P. G., and F. Scherbaum (2004). Love’s formula and H/V ratio (ellipticity) of Rayleigh waves, Wave Motion 40, 57–67. Mancin, N., L. Martelli, and C. Barbieri (2006). Foraminiferal biostratigraphic and paleobathymetric constraints in geohistory analysis: The example of the Epiligurian succession of the Secchia Valley (Northern Apennines, Mid Eocene–Late Miocene), Boll. Soc. Geol. Italy 125, 163–186. Martelli, L., U. Cibin, A. Di Giulio, and R. Cataranziti (1998). Litostratigrafia della Formazione di Ranzano (Priaboniano-Rupeliano, Appennino Settentrionale e Bacino Terziario Piemontese), Boll. Soc. Geol. Italy 117, 151–185. Mucciarelli, M., and M. R. Gallipoli (2001). A critical review of 10 years of Nakamura technique, Boll. Geof. Teor. Appl. 42, 255–256. Mucciarelli, M., M. R. Gallipoli, and M. Arcieri (2003). The stability of horizontal-to-vertical spectral ratio by triggered noise and earthquake recordings, Bull. Seismol. Soc. Am. 93, 1407–1412. Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rep. RTRI 30, 25–33. Okada, H. (2003). The microtremor survey method., in Society of Exploration Geophysicists, American Geophysical Monograph 12, 135 pp. Parolai, S., S. Richwalski, C. Milkereit, and P. Bormann (2004). Assessment of the stability of H/V spectral ratios from ambient noise and comparision with earthquake data in the Cologne area (Germany), Tectonophysics 390, no. 1-4, 57–73. Rigano, R., F. Cara, G. Lombardo, and A. Rovelli (2008). Evidence for ground motion polarization on fault zones of Mount Etna volcano, J. Geophys. Res. 113, B10306, doi 10.1029/2007JB005574. Satoh, T., H. Kawase, and S. Matsushima (2001). Differences between site characteristics obtained from microtremors, S-waves, P-waves, and codas, Bull. Seismol. Soc. Am. 91, no. 2, 313–334. Seo, K. (1998). Applications of microtremors as a substitute of seismic motion—reviewing the recent microtremors joint research in different sites, in The Effects of Surface Geology on Seismic Motion, K. Irikura, K. Kudo, H. Okada, and T. Sasatani (Editors), Yokohama, Balkema, Rotterdam, 577–586. SESAME Project (2003). H/V technique: Data processing. Report on the multiplatform H/V processing software J-SESAME, European Commission—Research General Directorate Project WP03, deliverable D09.03, http://sesame‐fp5.obs.ujf‐grenoble.fr/Delivrables/D09‐03_Texte.pdf (last accessed March 2010). SESAME Project (2004a). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: Measurements, processing and interpretation. SESAME Euopean Resaerch Project WP12, deliverable D23.12, http://sesame‐fp5.obs.ujf‐grenoble.fr/ Delivrables/Del‐D23‐HV_User_Guidelines.pdf (last accessed March 2010). SESAME Project (2004b). H/V technique: Empirical evaluation. Comparisons of experimentally and theoretically estimated transfer functions with the (H/V) spectral ratio and evaluation of the applicability of the latter in cases of linear or/and non-linear soil behaviour, European Commission—Research General Directorate Project WP04, deliverable D16.04, http://sesame‐fp5.obs.ujf‐grenoble.fr/Delivrables/D16‐04.pdf (last accessed March 2010). Tokimatsu, K., S. Wakai, and S. Arai (1998). Three-dimensional soil stratification using surface waves in microtremors, Proc. of the 1st Conference on Geotechnical Site Characterization, Atlanta, 1 April 1998, 537–542. Wilcock, W. S. D, S. C. Webb, and I. T. Bjarnason (1999). The effect of local wind on seismic noise near 1 Hz at the MELT site and in Iceland, Bull. Seismol. Soc. Am. 89, no. 6, 1543–1557. Withers, M. M., R. C. Aster, C. J. Young, and E. P. Chael (1996). High frequency analysis of seismic background noise as a function of wind speed and shallow depth, Bull. Seismol. Soc. Am. 86, 1507–1515. Yamanaka, H., M. Takemura, and H. Kagami (1993). Continuous measurements of microtremors on sediments and basement in Los Angeles, California, Bull. Seismol. Soc. Am. 83, no. 5, 1595–1609.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorCara, F.en
dc.contributor.authorDi Giulio, G.en
dc.contributor.authorMilana, G.en
dc.contributor.authorBordoni, P.en
dc.contributor.authorHaines, J.en
dc.contributor.authorRovelli, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversity of Cambridgeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptGNS Science, Dunedin, 764 Cumberland Street, Dunedin 9016, New Zealand-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-1702-563X-
crisitem.author.orcid0000-0002-4097-7102-
crisitem.author.orcid0000-0002-2775-4924-
crisitem.author.orcid0000-0002-3391-4402-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
1263.pdfMain article2.75 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

15
checked on Feb 10, 2021

Page view(s) 50

280
checked on Apr 17, 2024

Download(s)

32
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric