Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6347
DC FieldValueLanguage
dc.contributor.authorallde lorenzo, S.; Dipartimento di Geologia e Geofisica & Centro Interdipartimentale per il Rischio Sismico e Vulcanico, Università di Bari, Italyen
dc.contributor.authorallGiampiccolo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallMartinez-Arevalo, C.; Departamento de Volcanología, Museo Nacional de Ciencias Naturales, CSIC, Madrid Spainen
dc.contributor.authorallPatanè, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallRomeo, A.; Dipartimento di Geologia e Geofisica & Centro Interdipartimentale per il Rischio Sismico e Vulcanico, Università di Bari, Italyen
dc.date.accessioned2010-12-14T14:57:59Zen
dc.date.available2010-12-14T14:57:59Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6347en
dc.description.abstractA crucial point in the analysis of tectonic earthquakes occurring in a volcanic area is the inference of the orientation of the structures along which the ruptures occur. These structures represent zones of weakness which could favor the migration of melt toward the surface and the assessment of their geometry is a fundamental step toward efficient evaluation of volcanic risk. We analyzed a high-quality dataset of 171 lowmagnitude, tectonic earthquakes that occurred at Mt. Etna during the 2002–2003 eruption. We applied a recently developed technique aimed at inferring the source parameters (source size, dip and strike fault) and the intrinsic quality factor Qp of P waves from the inversion of rise times. The technique is based on numerically calibrated relationships among the rise time of first P waves and the source parameters for a circular crack rupturing at a constant velocity. For the most of the events the directivity source effect did not allow us to constrain the fault plane orientation. For a subset of 45 events with well constrained focal mechanisms we were able to constrain the “true” fault plane orientation. The level of resolution of the fault planes was assessed through a non linear analysis based on the random deviates technique. The significance of the retrieved fault plane solutions and the fit of the assumed source model to data were assessed through a χ-square test. Most of the retrieved fault plane solutions agree with the geometrical trend of known surface faults. The inferred source parameters and Qp are in agreement with the results of previous studiesen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/189(2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5274en
dc.subjectrise timeen
dc.subjectdirectivityen
dc.titleFault plane orientations of microearthquakes at Mt. Etna from theinversion of P-wave rise timesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber247-256en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.identifier.doi10.1016/j.jvolgeores.2009.11.011en
dc.relation.referencesAzzaro, R., 1999. Earthquake surface faulting at Mt. Etna volcano (Sicily) and implications for active tectonics. J. Geodyn. 28, 193–213. doi:10.1016/S0264-3707(98)00037-4. Barberi, G., Cocina, O., Patanè, D., 2006. Fast deformation processes at Mt. Etna related to dike injection leading to the 2001 and 2002–2003 flank eruptions. EGU Conference, Vienna, Austria, April 2006. Barberi, G., Cocina, O., Maiolino, V., Musumeci, C., Privitera, E., 2004. Insight into Mt. Etna (Italy) kinematics during 2002–2003 eruption as inferred by seismic stress and strain tensors inversion. Geophys. Res. Lett. 31, L2164. doi:10.1029/2004GL020918. Boatwright, J., 1984. The effect of rupture complexity in estimate of source size. J. Geophys. Res. 89, 1132–1146. Bonaccorso, A., Ferrucci, F., Patanè, D., Villari, L., 1996. Fast deformation processes and eruptive activity at Mt. Etna (Italy). J. Geophys. Res. 101 (B8), 17467–17480. Cocina, O., Neri, G., Privitera, E., Spampinato, S., 1997. Stress tensor computations in the Mount Etna area (Southern Italy) and tectonic implications. J. Geodyn. 23 (2), 109–127. Cramér, H., 1946. In: Morse, M., Tucker, W. (Eds.), Mathematical Methods of Statistics, Princeton Mathematical Series. Princeton University Press, Princeton, USA. D'Amico, S., Maiolino, V., 2005. Local magnitude estimate at Mt. Etna. Ann. Geophys. 48, 215–229. Deichmann, N., 1997. Far field pulse shapes from circular sources with variable rupture velocities. Bull. Seism. Soc. Am. 87, 1288–1296. de Lorenzo, S., Zollo, A., 2003. Size and geometry of microearthquake seismic ruptures from P and S Pulse Width Data. Geophys. J. Int. 155, 422–442. de Lorenzo, S., Di Grazia, G., Giampiccolo, E., Gresta, S., Langer, H., Tusa, G., Ursino, A., 2004. Source and Qp parameters from pulse width inversion of microearthquake data in southeastern Sicily, Italy. J. Geophys. Res. 109, B07308. doi:10.1029/ 2003JB002577. de Lorenzo, S., Filippucci, M., Giampiccolo, E., Patanè, D., 2006. Intrinsic Qp at Mt. Etna from the inversion of rise times of 2002 microearthquake sequence. Ann. Geophys. 49, 1215–1234. Evans, J.R., Eberhart-Phillips, D., Thurber, C.H., 1994. Users's manual for SIMULPS12 for imaging Vp and Vp/Vs:a derivative of the Thurber tomographic inversion SIMUL3 for local earthquakes and explosions. US Geol. Survey, Open File Report, pp. 94–431. Filippucci,M., de Lorenzo, S., Boschi, E., 2006. Fault plane orientations ofsmall earthquakes of the 1997 Umbria-Marche (Italy) seismic sequence from P-wave polarities and rise times. Geophys. J. Int. 166 (1), 322–338. doi:10.1111/j.1365-246X.2006.02998.x. Giampiccolo, E., D'Amico, S., Patanè, D., Gresta, S., 2007. Attenuation and source parameters of shallow microearthquakes at Mt. Etna volcano (Italy). Bull. Seism. Soc. Am. 97 (1B), 184–197. Gresta, S., Peruzza, L., Slejko, D., Di Stefano, G., 1998. Inferences on the main volcanotectonic structures at Mt. Etna (Sicily) from a probabilistic seismological approach. J. Seismol. 2, 105–116. Keilis-Borok, V.I., 1959. On estimation of the displacement in an earthquake source dimensions. Ann. Geofis. XII, 205–214. Lanzafame, G., Neri, M., Rust, D., 1996. A preliminary structural evaluation of recent tectonic activity on the eastern flank of Mount Etna, Sicily, West London Pap. Environ. Stud. 3, 73–90. Mori, J., 1996. Rupture directivity and slip distribution of theM4.3 foreshock to the 1992 Joshua Tree earthquake, Southern California. Bull. Seism. Soc. Am. 86, 805–810. Musumeci, C., Cocina, O., De Gori, P., Patanè, D., 2004. Seismological evidences of stress induced by dike injection during the 2001 Mt. Etna eruption. Geophys. Res. Lett. 31, L07617. doi:10.1029/2003GL019367. Patanè, D., Privitera, E., 2001. Seismicity related to 1989 and 1991–93 Mt. Etna (Italy) eruptions: kinematic constraints by fault solution analysis. J. Volcanol. Geotherm. Res. 109, 77–98. Patanè, D., Barberi, G., Cocina, O., De Gori, P., Chiarabba, C., 2006. Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313, 821–823. Patanè, D., Giampiccolo, E., 2004. Faulting processes and earthquake source parameters at mount etna: state of the art and perspectives. In: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., Falsaperla, S. (Eds.), Etna Volcano Laboratory. Geophysical monograph series. AGU, pp. 167–189. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1989. Numerical Recipes, The Art of Scientific Computing (Fortran Version). Cambridge University Press, Cambridge, USA. Rasà, R., Ferrucci, F., Gresta, S., Patanè, D., 1995. Etna: sistema di alimentazione profondo, assetto geostatico locale e bimodalità di funzionamento del vulcano. In: Ferrucci, F., Innocenti, F. (Eds.), Progetto Etna 1993–1995: Pubblicazione Speciale GNV, pp. 145–150. Reasenberg, P., Oppheneimer, D.H., 1985. FPFIT, FPPLOT and FPPAGE: FORTRAN computer program for calculating and displaying earthquake fault-plane solutions. US Geological Survey Report, pp. 85–739. Sato, T., Hirasawa, T., 1973. Body wave spectra from propagating shear cracks. J. Phys. Earth 21, 415–432. Tanguy, J.C., Condomines, C., Kieffer, G., 1997. Evolution of the Mount Etna magma: constraints on the present feeding system and eruptive mechanisms. J. Volcanol. Geotherm. Res. 75, 221–250. Vasco, D.W., Johnson, L.R., 1998. Whole earth structure estimated from seismic arrival times. J. Geophys. Res. 103, 2633–2672. Warren, L.M., Shearer, P.M., 2006. Systematic determination of earthquake rupture directivity and fault planes from analysis of long-period P-wave spectra. Geophys. J. Int. 164, 46–62. Zollo, A., de Lorenzo, S., 2001. Source parameters and three-dimensional attenuation structure from the inversion of microearthquake pulse width data: method and synthetic tests. J. Geophys. Res. 106, 16,287–16,306.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorde lorenzo, S.en
dc.contributor.authorGiampiccolo, E.en
dc.contributor.authorMartinez-Arevalo, C.en
dc.contributor.authorPatanè, D.en
dc.contributor.authorRomeo, A.en
dc.contributor.departmentDipartimento di Geologia e Geofisica & Centro Interdipartimentale per il Rischio Sismico e Vulcanico, Università di Bari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDepartamento de Volcanología, Museo Nacional de Ciencias Naturales, CSIC, Madrid Spainen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Geologia e Geofisica & Centro Interdipartimentale per il Rischio Sismico e Vulcanico, Università di Bari, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra e Geoambientali, University of Bari, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptDepartamento de Volcanología, Museo Nacional de Ciencias Naturales, CSIC, Madrid Spain-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptDipartimento di Geologia e Geofisica & Centro Interdipartimentale per il Rischio Sismico e Vulcanico, Università di Bari, Italy-
crisitem.author.orcid0000-0003-2504-1485-
crisitem.author.orcid0000-0001-5203-7436-
crisitem.author.orcid0000-0001-9410-5126-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
19_JVGR_2009.pdfMain article1.96 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

5
checked on Feb 7, 2021

Page view(s)

270
checked on Apr 17, 2024

Download(s)

23
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric