Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6338
DC FieldValueLanguage
dc.contributor.authorallParolai, S.; GFZ-Potsdamen
dc.contributor.authorallBindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallAnsal, A.; 3Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsüen
dc.contributor.authorallKurtulus, A.; Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsüen
dc.contributor.authorallStrollo, A.; GFZ-Potsdamen
dc.contributor.authorallZscahu, J.; GFZ-Potsdamen
dc.date.accessioned2010-12-14T07:16:42Zen
dc.date.available2010-12-14T07:16:42Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6338en
dc.description.abstractThe estimation of shear-wave velocity and attenuation in near-surface geology is of primary importance in engineering seismology. In fact, their knowledge is essential for site response studies when preparing improved seismic hazard scenarios. In this study, we propose two approaches for estimating the average shear-wave quality factor Qs by using recordings of a vertical array of accelerometers. The methods are mainly based on the deconvolution of the wavefield recorded in a borehole with that recorded at the surface. The first method requires the Fourier transform of the deconvolved wavefield to be fitted with a theoretical transfer function valid for the vertical or nearly vertical (in the case at hand up to 30° incidence angle) propagation of S-waves. The second method is based on the spectral fitting of the Fourier transform of only the acausal part of the deconvolved wavefield with a theoretical transfer function. Both methods can be applied without any prior knowledge of the subsoil structure (since they are based on empirical data analysis) and do not require a precise knowledge of the azimuthal orientation of the sensors in the boreholes (which is seldom available). First, we describe the theoretical framework of the proposed methodologies for Qs estimation, which are based on the assumption that the structure in the borehole is weakly heterogeneous in the vertical direction (that is, no large impedance contrast exists between the borehole sensor and the surface). Second, by using synthetic accelerograms, we verify that in a realistic subsoil structure, the assumption of vertical homogeneity can hold and we investigate the robustness and the suitability of the proposed methods. Finally, only the method that was shown to provide the more stable results, based on fitting the borehole-to-surface spectral ratio with a theoretical function, is applied to earthquakes signals recorded by a vertical array of accelerometers installed in Ataköy (western Istanbul). Results show that using borehole data provides a fair and robust estimate of an average Qs (of about 30, 46 and 99 for the 0-50, 0-70, 0-140 m depth ranges, respectively), that can be used for numerical simulations of ground motion.en
dc.language.isoEnglishen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/181(2010)en
dc.subjectborehole seismologyen
dc.titleDetermination of shallow S-wave attenuation by down-hole waveform deconvolution: a case study in Istanbul (Turkey)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1147-1158en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1111/j.1365-246X.2010.04567.xen
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorParolai, S.en
dc.contributor.authorBindi, D.en
dc.contributor.authorAnsal, A.en
dc.contributor.authorKurtulus, A.en
dc.contributor.authorStrollo, A.en
dc.contributor.authorZscahu, J.en
dc.contributor.departmentGFZ-Potsdamen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.department3Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsüen
dc.contributor.departmentBoğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsüen
dc.contributor.departmentGFZ-Potsdamen
dc.contributor.departmentGFZ-Potsdamen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptOGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-
crisitem.author.deptBogazici University, Kandilli Observatory and Earthquake Research Institute, Istanbul, Turkey-
crisitem.author.deptBoğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü-
crisitem.author.deptDepartment 2: Physics of the Earth, Helmholtz Centre Potsdam, GFZ German Research Centre for Geoscience, Telegrafenberg, 14473 Potsdam, Germany-
crisitem.author.orcid0000-0002-9084-7488-
crisitem.author.orcid0000-0002-8619-2220-
crisitem.author.orcid0000-0001-9602-6077-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Qistanbul.pdfmain article1.34 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

29
checked on Feb 10, 2021

Page view(s)

123
checked on Apr 24, 2024

Download(s) 50

244
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric