Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6331
DC FieldValueLanguage
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallZuccarello, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSaccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallRymer, H.; The Open University, Department of Earth and Environmental Sciences, Walton Hall, Milton Keynes, MK7 6AA, UKen
dc.contributor.authorallRapisarda, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2010-12-13T14:37:49Zen
dc.date.available2010-12-13T14:37:49Zen
dc.date.issued2010-08en
dc.identifier.urihttp://hdl.handle.net/2122/6331en
dc.description.abstractExperimental and theoretical studies have shown that, due to the magma/gas dynamics in the upper part of a volcano’s plumbing system, gravity changes can develop over periods between a few tens of seconds and several hours. The mass transport, implied by certain fast-evolving volcanic processes, also constitute the source mechanism of seismic waves with frequencies over the lower limit of the seismic band. These seismic waves could affect the measuring system of spring gravimeters, that are increasingly used as continuously running devices to monitor and study active volcanoes. As a consequence, under some circumstances, the signal from a continuously running spring gravimeter will be the combination of the gravity field component and the inertial acceleration component, the latter due to the ground motion. In such cases, the inertial acceleration must be separated from the gravity signal to assess the amount of mass redistributed during the studied process. To achieve this separation, the frequency response curve of the spring gravimeter to inertial accelerations must be calculated, since it is not supplied by manufacturers. In this paper, we present a method to retrieve the above curve, using simultaneous recordings during the transit of teleseismic waves, of a LaCoste & Romberg D gravimeter and a Nanometrics Trillium 40 broadband seismometer, whose frequency response curve to ground acceleration is known a-priori. The use of teleseismic waves is particularly useful for our purpose since teleseisms are not associated with a local mass redistribution; the gravimeter will thus be affected only by the ground motion, making the above calculation possible. Our results show that, because of the instrumental damping, the effect of the inertial acceleration is reduced in the output signal from the gravimeter to 0.5 and 0.1 of its original value, at frequencies between 0.02 and 0.07 Hz, respectively. The robustness of the calculated frequency response curve is proven using independent simultaneous signals from gravimeter and broadband seismometer.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2 / 182 (2010)en
dc.subjectTime-series analysis; Fourier analysis; Time variable gravity; Volcano seismologyen
dc.titleThe effect of inertial accelerations on the higher frequency components of the signal from spring gravimetersen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber772-780en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.identifier.doi10.1111/j.1365-246X.2010.04644.xen
dc.relation.referencesAchilli, V., Baldi, P., Casula, G., Errani, M., Focardi, S., Guerzoni, M., Palmonari, F. Raguní, G., 1995. A calibration system for superconducting gravimeters, J. Geod., 69 (2), 73-80. Battaglia, M., Gottsmann, J., Carbone, D. Fernández, J.,2008. 4D volcano gravimetry Geophysics, 73(6), doi:10.1190/1.2977792. Bormann, P., Liu, R., Xu, Z, Ren, K, Zhang, L Wendt, S, 2009. First Application of the New IASPEI Teleseismic Magnitude Standards to Data of the China National Seismographic Network, Bull. seism. Soc. Am., 99(3), 1868-1891, DOI: 10.1785/0120080010. Carbone, D., Budetta, G. Greco, F., 2003a. Bulk processes some months before the start of the 2001 Mt Etna eruption, evidenced throughout microgravity studies, J. Geophys. Res., 108(B12) 2556, doi: 10.1029/2003JB002542. Carbone, D., Budetta, G., Greco, F. Rymer, H., 2003b. Combined discrete and continuous gravity observations at Mt. Etna, J. Volcanol. Geother. Res., 2581, 1-13. Carbone, D., Zuccarello, L., Saccorotti, G. Greco, F., 2006. Analysis of simultaneous gravity and tremor anomalies observed during the 2002– 2003 Etna eruption, Earth Planet. Sci. Lett., 245, 616- 629. Carbone, D., Zuccarello, L. Saccorotti, G., 2008. Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period, Geophys. Res. Lett., 35, L06305, doi:10.1029/2008GL033212. Carbone, D., Jousset, P. Musumeci, C., 2009. Gravity ‘‘steps’’ at Mt. Etna volcano (Italy): Instrumental effects or evidences of earthquake-triggered magma density changes? Geophys. Res. Lett., 36, L02301, doi:10.1029/2008GL036179. Chouet, B., 2003. Volcano seismology, Pure Appl. Geophys., 160, 739–788. Chouet, B., Dawson, P. Martini, M., 2008. Shallow-conduit dynamics at Stromboli Volcano, Italy, imaged from waveform inversions, J. Geol. Soc. Lond., Special Publications, 307, 57-84 doi:10.1144/SP307.5. Chouet, B., Dawson, P., Ohminato, T., Martini, M., Saccorotti, G., Giudicepietro, F., De Luca, G., Milana, G. Scarpa, R., 2003. Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data, J. Geophys. Res., 108(B1), 2019, doi:10.1029/2002JB001919. Gadallah, M.R. Fisher, L., 2004. Applied Seismology: A Comprehensive Guide to Seismic Theory and Application, PennWell Corporation. Gottsmann, J., Carniel, R., Coppo, N., Wooller, L., Hautmann, S. Rymer, H., 2007. Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: Multiparameter insights from Nisyros, Greece, Geophys. Res. Lett., 34(7) L07307. Kleusberg, A., 1989, Separation of inertia and gravitation in airborne gravimetry with GPS. In Developments in Four-Dimensional Geodesy, edited by F. K. Brunner and C. Rizos (Berlin: Springer-Verlag) , pp. 47-63. Krüger, F. Ohrnberger, M., 2005. Tracking / the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance, Nature, 435, 937-939, doi:10.1038nature03696. Longo, A., Barbato, D., Papale, P., Saccorotti, G. Barsanti, M., 2008. Numerical simulation of the dynamics of fluid oscillations in a gravitationally unstable, compositionally stratified fissure, J. Geol. Soc. Lond., Special Publications, 307, 33-44, doi: 10.1144/SP307.3. Longo, A., Vassalli, M., Papale, P. Barsanti, M., 2006. Numerical simulation of convection and mixing in magma chambers replenished with CO 2-rich magma, Geophys. Res. Lett., 33, doi: 10.1029/2006GL027760. Papoulis, A., 1991. Probability, Random Variables, and Stochastic Processes, 3Th edn, McGraw Hill. Patanè, D., Di Grazia, G., Cannata, A., Montalto, P. Boschi, E., 2008. Shallow magma pathway geometry at Mt. Etna volcano, Geochem. Geophys. Geosys., 9, Q12021, doi:10.1029/2008GC002131. Rymer, H., Murray, J.B., Brown, G.C., Ferrucci, F. McGuire, J., 1993. Mechanisms of magma eruption and emplacement at Mt. Etna between 1989 and 1992, Nature, 361, 439-441. Saccorotti, G., Lokmer, I, Bean, C.J., Di Grazia, G. Patanè D., 2007. Analysis of sustained long-period activity at Etna Volcano, Italy, J. Volcanol. Geother. Res., 160, 340-354. Sharma, P.V., 1986. Geophysical Methods in Geology, Elsevier, New York. Torge, W., 1989. Gravimetry, pp. 465, Walter de Gruyter, Berlin. VanRuymbeke, M., 1989. A calibration system for gravimeters using a sinusoidal acceleration resulting from a vertical periodic movement, J. Geod., 63(3), 223-236. Varga, P., Hajósy, A. Csapó, G., 1995. Laboratory calibration of Lacoste–Romberg type gravimeters by using a heavy cylindrical ring, Geoph. J. Int., 120 (3), 745 - 757. Welsh, P., 1967. The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over sort, modified periodoghrams, pp. 70-73, IEEE Trans. Audio & Electroacoust., AU-15.en
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCarbone, D.en
dc.contributor.authorZuccarello, L.en
dc.contributor.authorSaccorotti, G.en
dc.contributor.authorRymer, H.en
dc.contributor.authorRapisarda, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentThe Open University, Department of Earth and Environmental Sciences, Walton Hall, Milton Keynes, MK7 6AA, UKen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptDepartment of Earth Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.orcid0000-0003-0094-9577-
crisitem.author.orcid0000-0003-2915-1446-
crisitem.author.orcid0000-0003-4545-7285-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Carbone_et_al_GJI_2010.pdfMain article1.05 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

4
checked on Feb 7, 2021

Page view(s) 50

234
checked on Apr 17, 2024

Download(s)

31
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric