Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6239
DC FieldValueLanguage
dc.contributor.authorallFavalli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallFornaciai, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallMazzarini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallHarris, A.; Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, Clermont‐Ferrand, Franceen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBehncke, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPareschi, M. T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallTarquini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2010-11-16T07:23:26Zen
dc.date.available2010-11-16T07:23:26Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6239en
dc.description.abstractApplication of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of <1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.en
dc.description.sponsorshipThis work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115(2010)en
dc.subjectLIDARen
dc.subjectlava flowen
dc.subjectEtnaen
dc.titleEvolution of an active lava flow field using a multitemporal LIDAR acquisitionen
dc.title.alternativeEVOLUTION OF AN ACTIVE LAVA FLOWen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB11203en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1029/2010JB007463en
dc.relation.referencesAndronico, D., S. Branca, S. Calvari, M. Burton, T. Caltabiano, R.A. Corsaro, P. Del Carlo, G. Garfi, L. Lodato, L. Miraglia, F. Muré, M. Neri, E. Pecora, M. Pompilio, G. Salerno, and L. Spampinato (2005), A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system, Bull. Volcanol., 67, 314–330. Bailey, J.E., A.J.L. Harris, J. Dehn, S. Calvari and S.K. Rowland (2006), The changing morphology of an open lava channel on Mt. Etna, Bull. Volcanol., 68, 497–515. Baltsavias, E.P. (1999). Airborne laser scanning: basic relations and formulas, ISPRS J Photogram. Rem. Sens., 54, 199-214. Behncke, B., and M. Neri (2003), The July–August 2001 eruption of Mt. Etna (Sicily), Bull. Volcanol., 65, 461–476, doi: 10.1007/s00445-003-0274-1. Behncke, B., S. Calvari, S. Giammanco, M. Neri, and H. Pinkerton (2008), Pyroclastic density currents resulting from interaction of basaltic magma with hydrothermally altered rock: an example from the 2006 summit eruptions of Mount Etna (Italy), Bull. Volcanol., 70, 1249–1268, doi: 10.1007/s00445-008-0200-7. Behncke, B., S. Falsaperla, and E. Pecora (2009), Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data. J. Geophys. Res., 114, B03211, doi:10.1029/2008JB005882 Bisson M., B. Behncke, A. Fornaciai, and M. Neri (2009), Lidar-based digital terrain analysis of an area exposed to the risk of lava flow invasion: the Zafferana Etnea territory, Mt. Etna (Italy), Nat. Hazards, 50, 321-334, doi:10.1007/s11069-009-9346-7. 28 Burton, M.R., M. Neri, D. Andronico, S. Branca, T. Caltabiano, S. Calvari, R.A. Corsaro, P. Del Carlo, G. Lanzafame, L. Lodato, L. Miraglia, G. Salerno, and L. Spampinato (2005), Etna 2004-2005: An archetype for geodynamically-controlled effusive eruptions. Geophys. Res. Lett., 32, L09303. DOI 10.1029/2005GL022527. Calvari, S., and H. Pinkerton (1998), Formation of lava tubes and extensive flow field during the 1991– 1993 eruption of Mount Etna. J. Geophys. Res., 103, B11, 27291–27301 Calvari, S., M. Coltelli, M. Neri, M. Pompilio, and V. Scribano (1994), The 1991-93 Etna eruption: chronology and geological observations, Acta Vulcanol., 4, 1-15. Coltelli, M., C. Proietti, S. Branca, M. Marsella, D. Andronico, L. Lodato (2007), Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping, J. Geophys. Res., 112, F02029, doi: 10.1029/2006JF000598. Csatho, B., T. Schenk, P. Kyle, T. Wilsond, and W.B. Krabille (2008), Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: applications to geological mapping of a volcano, J. Volcanol. Geotherm. Res., 177, 531-548 doi:10.1016/j.jvolgeores.2008.08.016. Davila, N., L. Capra, J.C. Gavilanes-Ruiz, N. Varley, G. Norini, and A.G. Vazquez (2007), Recent lahars at Volcán de Colima (Mexico): drainage variation and spectral classification, J. Volcanol. Geotherm. Res., 165,127–141 doi:10.1016/j.jvolgeores.2007.05.016. Favalli, M., A. Fornaciai, and M.T. Pareschi (2009a), LIDAR strip adjustment: application to volcanic areas, Geomorphology, doi:10.1016/j.geomorph.2009.04.010. Favalli, M., A.J.L. Harris, A. Fornaciai, M.T. Pareschi, and M. Mazzarini (2009b), The Transitional Channel Zone of Etna’s 2001 Flow, Bull. Volcanol., doi:10.1007/s00445-009-0300-z Favalli, M., D. Karátson, F. Mazzarini, M.T. Pareschi, and E. Boschi (2009c), Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna volcano (Italy), based on highresolution LiDAR data. J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2009.07.011. 29 Fornaciai, A., M. Bisson, P. Landi, F. Mazzarini, and M.T. Pareschi (2010a), A LIDAR survey of Stromboli volcano (Italy): DEM-based geomorphology and intensity analysis, International Journal of Remote Sensing, 31(12), 317–3194, doi:10.1080/01431160903154416 Fornaciai, A., B. Behncke, M.Favalli, M. Neri, S. Tarquini, and E. Boschi (2010).The rapid growth and aging of cinder cones: examples from the 2001 and 2002-2003 eruptions of Mount Etna (Italy), Bull. Volcanol., doi:10.1007/s00445-010-0388-1. Frazzetta, G., and R. Romano (1984), The 1983 Etna eruption: Event chronology and morphological evolution of the lava flow, Bull. Volcanol., 47, 1079-1096. Guest, J. E., C. R. J. Kilburn, H. Pinkerton, and A. M. Duncan (1987), The evolution of lava flowfields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily., Bull. Volcanol., 49, 527-540. Harris, A., and S. M. Baloga (2009), Lava discharge rates from satellite-measured heat flux, Geophys. Res. Lett., 36, L19302, doi:10.1029/ 2009GL09717. Harris, A., M. Favalli, F. Mazzarini, and M.T. Pareschi (2007), Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data, Geophys. Res. Lett., 34, L01301, doi:10.1029/ 2006GL028126. Harris, A. J. L., J. Dehn, and S. Calvari (2007b), Lava effusion rate definition and measurement: A review, Bull. Volcanol., 70, 1 – 22, doi:10.1007/s00445-007-0120-y. Höfle, B, and N. Pfeifer (2007), Correction of laser scanning intensity data: Data and model-driven approaches, ISPRS J. Photogram. Rem. Sens., 62, 415–433. James, M. R., H. Pinkerton, and S. Robson (2007), Image-based measurement of flux variation in distal regions of active lava flows, Geochem. Geophys. Geosyst., 8, Q03006, doi:10.1029/2006GC001448. 30 James, M. R., H. Pinkerton, and L. J. Applegarth (2009), Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery, Geophys. Res. Lett., 36, L22305, doi:10.1029/2009Gl040701. James, M.R., H. Pinkerton, andM. Ripepe (2010), Imaging short period variations in lava flux, Bull. Volcanol., in review. Kilburn, C. R. J., and J. E. Guest (1993), Aa lavas of Mount Etna, Sicily. In: Kilburn CRJ, Luongo G (eds) Active lavas: Monitoring and modeling. UCL, London, pp 73–106 Lipman, P. W., and N. G. Banks (1987), Aa flow dynamics, Mauna Loa. UGSG Prof. Pap., 1350, 1527–1567. Lautze, N.C., A. J. L. Harris, J. Bailey, M. Ripepe, S. Calvari, J. Dehn, S. Rowland, and K. Evans- Jones (2004), Evidence for pulsed magma supply at Mount Etna during 2001, J. Volcanol. Geotherm. Res., 137, 231-246. Marsella, M., C. Proietti, A. Sonnessa, M. Coltelli, P. Tommasi, and E. Bernardo (2009), The evolution of the Sciara del Fuoco subaerial slope during the 2007 Stromboli eruption: Relation between deformation processes and effusive activity. J. Volcanol. Geotherm. Res., 182, 201-213, DOI:10.1016/j.jvolgeores.2009.02.002. Mazzarini, F., M.T. Pareschi, M. Favalli, I. Isola, S. Tarquini, and E. Boschi (2005), Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data, Geophys. Res. Lett., 32, L04305, doi:10.1029/2004Gl021815. Mazzarini, F., M.T. Pareschi, M. Favalli, I. Isola, S. Tarquini, and E. Boschi, (2007), Lava flow identification and aging by means of Lidar intensity: the Mt. Etna case, J. Geophys. Res., 112, B02201, doi:10.1029/2005JB004166. 31 Neri, M., B. Behncke, M. Burton, S. Giammanco, E. Pecora, E. Privitera, and D. Reitano, (2006), Continuous soil radon monitoring during the July 2006 Etna eruption. Geophys. Res. Lett., 33, L24316, doi:10.1029/2006GL028394. Neri, M., F. Mazzarini, S. Tarquini, M. Bisson, I. Isola, B. Behncke, and M.T. Pareschi (2008), The changing face of Mount Etna's summit area documented with LiDAR technology, Geophys. Res. Lett., 35, L09305 doi:10.1029/2008GL033740. Peterson, D. W., R.T. Holcomb, R. I. Tilling, R. L. Christiansen (1994), Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii, Bull. Volcanol., 56, 343-360. Queija, V. R., J.M. Stoker, and J.J. Kosovich (2005), Recent U.S. Geological Survey applications of Lidar, Photogrammetric Engineering and Remote Sensing, 71, 1, 5–9. Ripepe, M., A. J. L. Harris, and R. Carniel, (2002), Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano, J. Volcanol. Geotherm. Res., 118, 285-207. Ripepe, M., A. J. L. Harris, and M. Marchetti (2005), Coupled thermal oscillations in explosive activity at different craters of Stromboli volcano, Geophysical Research Letters, 32, L17302, doi:10.1029/2005GL022711. Smith, D. E., et al. (2001), Mars Orbiter laser altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, 23,689– 23,722. Sparks, R. S. J., H. Pinkerton, and G. Hulme (1976), Classification and formation of lava levees on Mount Etna, Sicily, Geology, 4, 269–271. Stevens, N. F., J. B. Murray, and G. Wadge (1997), The volume and shape of the 1991-1993 lava flow field at Mount Etna, Sicily, Bull. Volcanol., 58, 449-454. Stevens, N. F., G. Wadge, and J. B. Murray (1999), Lava flow volume and morphology from digitised contour maps: a case study at Mount Etna, Sicily, Geomorphology, 28, 251-261. 32 33 Tarquini S., M. Favalli (in press), Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy, Nat. Hazards, doi: 10.1007/s11069-009-9484-y. USGS (1998), National Mapping Program Technical Instructions: Standards for Digital Elevation Models, U.S. Geological Survey National Mapping Division, Reston, Virginia, URL: http://rmmcweb.cr.usgs.gov/public/nmpstds/demstds.html. Ventura, G., and G. Vilardo (2007), Emplacement mechanism of gravity flows inferred from high resolution Lidar data: The 1944 Somma–Vesuvius lava flow (Italy), Geomorphology, 95, 223–235, doi: 10.1016/j.geomorph.2007.06.005. Wagner, W., A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka (2006), Gaussian decomposition and calibration of a novel small-footprint full wave form digitising airborne laser scanner, ISPRS J. Photogram. Rem. Sens., 60,100–112. Wehr, A., and U. Lohr (1999), Airborne laser scanning – an introduction and overview. ISPRS J Photogram. Rem. Sens., 54, 68–82. Wright, R., S. Blake, A. Harris, and D. A. Rothery (2001), A simple explanation for the space-based calculation of lava eruption rates, Earth and Planetary Science Letters, 192, 223–233.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFavalli, M.en
dc.contributor.authorFornaciai, A.en
dc.contributor.authorMazzarini, F.en
dc.contributor.authorHarris, A.en
dc.contributor.authorNeri, M.en
dc.contributor.authorBehncke, B.en
dc.contributor.authorPareschi, M. T.en
dc.contributor.authorTarquini, S.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentClermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, Clermont‐Ferrand, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-7338-6069-
crisitem.author.orcid0000-0003-4829-4928-
crisitem.author.orcid0000-0002-3864-6558-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.orcid0000-0003-1991-1421-
crisitem.author.orcid0000-0002-8064-621X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010 Favalli et al JGR 2010.pdf4.05 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

61
checked on Feb 10, 2021

Page view(s) 50

284
checked on Mar 27, 2024

Download(s)

35
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric