Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6237
DC FieldValueLanguage
dc.contributor.authorallDi Biagio, C.; ENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italyen
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authoralldi Sarra, A.; ENEA/UTMEA-TER, S. Maria di Galeria, Italyen
dc.contributor.authorallde Zafra, R. L.; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USAen
dc.contributor.authorallEriksen, P.; Danish Meteorological Institute, Copenhagen, Denmarken
dc.contributor.authorallFiocco, G.; Department of Physics, “Sapienza” University of Rome, Rome, Italyen
dc.contributor.authorallFiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFuà, D.; Department of Physics, “Sapienza” University of Rome, Rome, Italyen
dc.date.accessioned2010-11-15T09:48:27Zen
dc.date.available2010-11-15T09:48:27Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6237en
dc.description.abstractThe 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to show the evolution of the 2009 SSW in the region of its maximum intensity. The first sign of the SSW was detected at θ~2000 K on January 19, when a rapid decrease in CO mixing ratio took place. The first evidence of a temperature increase was observed at the same level on 22 January, the earliest date on which lidar measurements reached above ~50 km. The warming propagated from the upper to the lower stratosphere in 7 days and the record maximum temperature of 289 K was observed between 1300 and 1500 K potential temperature on 22 January. A strong vortex splitting was associated with the SSW. Stratospheric backward trajectories indicate that airmasses arriving to Thule during the warming peak underwent a rapid compression and an intense adiabatic warming of up to 50 K. The rapid advection of air from the extra-tropics was also occasionally observed to produce elevated values of N2O mixing ratio. Starting from mid-February the temperature profile and the N2O mixing ratio returned to the pre-warming values in the mid and upper stratosphere, indicating the reformation of the vortex at these levels. In late winter, vertical descent from starting altitudes of ~60 km is estimated from CO profiles to be 0.25±0.05 km/day.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectsudden stratospheric warmingen
dc.subjectwinter polar stratosphereen
dc.subjecttemperatureen
dc.subjectO3en
dc.subjectN2Oen
dc.subjectCOen
dc.titleEvolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberD24315en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structureen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamicsen
dc.identifier.doi10.1029/2010JD014070en
dc.relation.referencesBarnett, J. J., and M. Corney (1985), Middle atmosphere reference model derived from satellite data, Handbook for MAP, 16, 47-137. Charlton, A.J., and L. Polvani (2007), A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarcks, J. Climate, 20, 449-469. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics, Proc. of the Int. Sch. of Phys. “Enrico Fermi”, vol. 124, 23– 54, Soc. It. di Fis., Bologna, Italy. de Zafra, R. L., and G. Muscari (2004), CO as an important high-altitude tracer of dynamics in the polar stratosphere and mesosphere, J. Geophys. Res., 109, D06105, doi:10.1029/2003JD004099. di Sarra, A., M. Cacciani, G. Fiocco, D. Fuà, and T. S. Jørgensen (2002), Lidar observations of polar stratospheric clouds over northern Greenland in the period 1990-1997, J. Geophys. Res., 107(D12), doi:10.1029/2001JD001074. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Keckhut, P., et al. (2004), Review of ozone and temperature lidar validations performed within the framework of the Network for theDetection of Stratospheric Change, J. Environ. Monit., 6, 721–733. Harada, Y., A. Goto, H. Hasegawa, and N. Fujikava (2010), A major stratospheric sudden warming event in January 2009, J. Atmos. Sci., in press. Labitzke, K, and H. 489 Van Loon (1988), Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and the stratosphere in the Northern Hemisphere winter, J. Atmos. Terr. Phys., 50, 197-206. Labitzke, K, and M. Kunze (2009), On the remarkable Arctic winter 2008/2009, J. Geophys. Res., 114, D00I02, doi:10.1029/2009JD012273. Manney, G. L., et al. (2005), The remarkable 2003-2004 winter and other recent warm winters in Arctic stratosphere since 1990s, J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367. Manney, G. L., et al. (2008), The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res., 113, D11115, doi:10.1029/2007JD009097. Manney, G. L., et al. (2009), Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett., 36, L12815, doi:10.1029/2009GL038586. Marenco, F., et al. (1997), Thermal structure of the winter middle atmosphere observed by lidar at Thule, Greenland, during 1993-1994, J. Atmos. Sol-Terr. Phys., 59 (2), 151- 158. Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, A. J., Polvani, L. M.(2009), A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure, J. Clim., 22, 1566-1585. Muscari, G., et al. (2007), Middle atmospheric O3, CO2, N2O, HNO3, and temperature profiles during the Arctic winter 2001-2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Orsolini, Y. J., J. Urban, D. Murtagh, S. Lossow, and V. Lympasuvan (2010), Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature 514 satellite observations by the Odin Sub-Millimetre Radiometer, J. Geophys. Res., 115, D12305, doi:10.1029/2009JD013501. Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., Singapore. Schoeberl, M.R., (1978), Stratospheric warmings: observations and theory, Rev. Geophys. and Space Ge., 16 (4), 521-538. Schoeberl M.R., and L. C. Sparling (1994), Trajectory Modelling; Diagnostic Tools in Atmospheric Physics, Proc. S.I.F. Course CXVI, edited by G. Fiocco and G. Visconti, North-Holland, Amsterdam, 1994. Van Loon, H., and K. Labitzke (1987), The Southern Oscillation. Part V: the anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the Quasi-Biennal Oscillation, Mon. Weather Rev., 115, 357-369.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDi Biagio, C.en
dc.contributor.authorMuscari, G.en
dc.contributor.authordi Sarra, A.en
dc.contributor.authorde Zafra, R. L.en
dc.contributor.authorEriksen, P.en
dc.contributor.authorFiocco, G.en
dc.contributor.authorFiorucci, I.en
dc.contributor.authorFuà, D.en
dc.contributor.departmentENEA/UTMEA-TER, S. Maria di Galeria, Italy and Department of Earth Science, University of Siena, Siena, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentENEA/UTMEA-TER, S. Maria di Galeria, Italyen
dc.contributor.departmentDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USAen
dc.contributor.departmentDanish Meteorological Institute, Copenhagen, Denmarken
dc.contributor.departmentDepartment of Physics, “Sapienza” University of Rome, Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Physics, “Sapienza” University of Rome, Rome, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptENEA/UTMEA-TER, S. Maria di Galeria, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Physics and Astronomy, and Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook, U.S.A.-
crisitem.author.deptDanish Meteorological Institute, Copenhagen, Denmark-
crisitem.author.deptDepartment of Physics, “Sapienza” University of Rome, Rome, Italy-
crisitem.author.deptSapienza Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma - Italy-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.orcid0000-0002-2405-2898-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Article.pdf4.92 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 10

12
checked on Feb 10, 2021

Page view(s) 50

305
checked on Mar 27, 2024

Download(s) 20

442
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric