Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6234
DC FieldValueLanguage
dc.contributor.authorallDe Ritis, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCarluccio, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVon Frese, R.; School of Earth Science, Ohio State University, Columbus, OH 43210, USAen
dc.date.accessioned2010-11-12T12:56:14Zen
dc.date.available2010-11-12T12:56:14Zen
dc.date.issued2010-07en
dc.identifier.urihttp://hdl.handle.net/2122/6234en
dc.description.abstractThe complex magnetic and gravity anomaly fields of the Southern Tyrrhenian Sea provide a record of the complicated properties and evolution of the underlying crust. Geologic interpretation of these anomalies is hindered by the effects of anomaly superposition and source ambiguity inherent to potential field analysis. A common approach to minimizing interpretational ambiguities is to consider analyses of anomaly correlations. Spectral correlation filters are used to separate positively and negatively correlated anomaly features based on the correlation coefficient given by the cosine of the phase difference between common wavenumber components. This procedure is applied to reduced-to-pole magnetic and first vertical derivative gravity anomalies for mapping correlative crustal magnetization and density contrasts. Adding and subtracting the standardized outputs of the filters yield summed (SLFI) and differenced (DLFI) local favorability indices that, respectively highlight positive and negative feature correlations in the anomaly data sets. Correlative maxima mainly reflect volcanic structures, and secondarily intrusive bodies and pre- Tortonian carbonates of the Maghrebian chain and the basement rocks of the Sardinia eastern margin. Correlative minima mostly mark sediment-filled peri-Tyrrhenian structural basins related to the Pliocene extensional tectonics, and intra-slope marine depressions related to post-Pliocene and still-active compressional tectonics off Northern Sicily. Prominent inverse anomaly correlations mainly reflect crustal features around the southern margin of the Tyrrhenian Sea that include higher density, lower magnetization pelagic-to-terrigenous and flysch-type nappes of the Sicilian-Maghrebian chain, as well as lower density, higher magnetization sediments filling depressions of the chain, and syn-rift sediments of Southeastern Sardinia.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries1-2/181 (2010)en
dc.subjectMagnetismen
dc.subjectGravityen
dc.subjectModellingen
dc.subjectBack-arc basinen
dc.subjectVolcanismen
dc.subjectTectonicsen
dc.subjectTyrrhenian Seaen
dc.titleRegional magnetic and gravity anomaly correlations of the Southern Tyrrhenian Seaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber27-41en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1016/j.pepi.2010.04.003en
dc.relation.referencesArgnani, A., Savelli, C., 2001. Magmatic signature of episodic back-arc rifting in the Southern Tyrrhenian Sea. In: Ziegler, P.A. (Ed.), Peri-Tethyan Rift/Wrench Basins and Passive Margins, Peri-Tethys, Mememory, vol. 186. Museum of Natural History, pp. 735–754. Barberi, F., Gandino, A., Gioncada, A., La Torre, P., Sbrana, A., Zenucchini, C., 1994. The deep structure of the Eolian arc Filicudi-Panarea-Vulcano sector in light of gravity, magnetic and volcanological data. Journal of Volcanology and Geothermal Research 61, 189–206. Barone, A, Fabbri, A., Rossi, S., Sartori, R., 1982. Geological structure and evolution of the marine areas adjacent to the Calabrian arc. Earth Evolution Sciences 3, 207–221. Bartole, R., 1995. The North Tyrrhenian-Northern Apennines post-collisional system: constraints for a geodynamic model. Terra Nova 7, 7–30. Blakely, R.J., 1996. Potential theory in gravity and magnetic applications. Cambridge University Press, p. 441. Blanco-Montenegro, I., Nicolosi, I., Pignatelli, A., Chiappini, M., 2008. Magnetic imaging of the feeding system of oceanic volcanic islands: El Hierro Canary islands. Geophysical Journal International 173, 339–350. Blanco-Montenegro, I., De Ritis, R., Chiappini, M., 2007. Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian islands, Italy). Bulletin of Volcanology 69 (6), 643–659, doi:10.1007/s00445-006-0100-7. Caratori, F., Tontini, F., Cocchi, L., Carmisciano, C., 2008. Potential-field inversion for a layer with uneven thickness: the Tyrrhenian Sea density model. Physics of the Earth Physics of the Earth and Planetary Interiors 166, 105–111. Carminati, E., Wortel, M.J.R., Spakman, W., Sabadini, R., 1998. The role of slab detachment processes in the opening of the Western-central Mediterranean basins: some geological and geophysical evidence. Earth Planetary Science Letters 160, 651–665. Catalano, R., D’Argenio, B., Montanari, L., Morlotti, E., Torelli, L., 1985. Marine geology of the NW Sicily offshore Sardinia Channel and its relationships with mainland structures. Bollettino Società Geologica Italiana 104, 207–215. Catalano, R., Doglioni, C., Merlini, S., Sulli, A., 2002. The subduction of the Ionian crust and the outer Calabrian Accretionary Wedge. In: EAGE Workshop ‘Geodynamics of the Mediterranean and Impact on Hydrocarbon Exploration’ May, 27–30, EAGE, Florence, Italy. Cella, F., Fedi, M., Florio, G., Rapolla, A., 1998. Gravity modeling of the lithoasthenosphere system in the Central Mediterranean. Tectonophysics 287, 117–138. Chiappini, M., Meloni, A., Boschi, E., Faggioni, O., Beverini, N., Carmisciano, C., Marson, I., 2000. On shore-offshore integrated shaded relief magnetic anomaly map at sea level of Italy and surrounding areas. Annals of Geophysics 43, 983–989. Chiarabba, C., De Gori, P., Speranza, F., 2008. The Southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth and Planetary Science Letters 268, 408–423. Cimini, G.B., 1999. P-wave deep velocity structure of the Southern Tyrrhenian subduction zone from nonlinear teleseismic traveltime tomography. Geophysical Research Letters 26, 3709–3712. Compagnoni, R., Morlotti, E., Torelli, L., 1989. Crystalline and sedimentary rocks from the scarps of the Sicily–Sardinia trough and Cornaglia Terrace Southwestern Tyrrhenian Sea: paleogeographic and geodynamic implications. Chemical Geology 77, 375–398. De Astis, G., Ventura, G., Vilardo, G., 2003. Geodynamic significance of the Aeolian volcanism Southern Tyrrhenian Sea, Italy in light of structural, seismological and geochemical data. Tectonics 22 (1040.), doi:10.1029/2003TC001506. Del Ben, A., Guarnieri, P., 2000. Neogene transgression in the Cefalu’ basin Southern Tyrrhenian: comparison between land and marine data. Memorie Societa’ Geological Italiana 55, 27–33. Doglioni, C., Gueguen, E., Harabaglia, P., Mongelli, F., 1999. On the origin of Wdirected subduction zones and applications to the Western Mediterranean. Geological Society of America 156, 541–561, Special Paper. Fabbri, A., Gallignani, P., Zitellini, N., 1981. Geologic evolution of the Peri-Tyrrhenian sedimentary basins of Mediterranean margins. In: Wezel, F.C. (Ed.), Sedimentary Basins of Mediterranean Margins. Tecnoprint, Bologna, Italy, pp. 101–126. Faccenna, C., Becker, T.W., Lucente, F.P., Jolivet, L., Rossetti, F., 2001. History of subduction and back-arc extension in the Central Mediterranean. Geophysical Journal International 145, 809–820. Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., Rossetti, F., 2003. Lateral slab deformation and the origin of the Western Mediterranean arcs. Tectonics 23, doi:10.1029/2002TC001488. Faggioni, O., Pinna, E., Savelli, C., Schreider, A.A., 1995. Geomagnetism and age study of Tyrrhenian seamounts. Geophysical Journal International 123, 915–930. Finetti, I., 2005. Deep seismic exploration of the Central Mediterranean and Italy. Elsevier, Amsterdam, p. 794. Finetti, I., Del Ben, A., 2005. Ionian Tethys lithosphere roll-back sinking and backarc Tyrrhenian opening from new CROP seismic data. In: Finetti, I. (Ed.), CROPCrustal Seismic Exploration of the Mediterranean Region. Elsevier, Amsterdam, pp. 483–504. Giunta, G., Bellomo, D., Carnemolla, S., Pisano, A., Profeta, R., Runfola, P., 1992. La linea di Taormina: residuo epidermico di una paleostruttura crostale del fronte cinematico maghrebide? Atti Convegno GNGTS Roma, 1197–1213. Goes, S., Giardini, D., Jenny, S., Hollenstein, C., Kahle, H.-G., Geiger, A., 2006. A recent tectonic reorganization in the South-Central Mediterranean. Earth and Planetary Science Letters 225, 335–345. Gvirtzman, Z., Nur, A., 1999. The formation of Mount Etna as the consequence of slab rollback. Nature 401, 782–785. Gvirtzman, Z., Nur, A., 2001. Residual topography, lithospheric structure and sunken slabs in the Central Mediterranean. Earth and Planetary Science Letters 187, 117–130. Hollenstein, C., Kahle, H.-G., Geiger, A., Jenny, S., Goes, S., Giardini, D., 2003. New GPS constraints on the Africa–Eurasia plate boundary zone in Southern Italy. Geophysical Research Letters 30 (18), 1935, doi:10.1029/2003GL017554. Kastens, K., Mascle, J., Auroux, C., 1988. ODP Leg 107 scientific party. 1988 – ODP Leg 107 in the Tyrrhenian sea: insights into passive margin and back-arc basin evolution. Geological Society of America Bulletin 100, 1140–1156. Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–245. Marani, M.P., Gamberi, F., 2004. Structural framework of the Tyrrhenian Sea unveiled by seafloor morphology. In: Marani, F., Gamberi, E., Bonatti (Eds.), From Seafloor to Deep Mantle: Architecture of the Thyrrhenian Backarc Basin. Memorie descrittive della Carta Geologica d’Italia, LXIV, APAT. Servizio Geologico d’Italia. Marani, M.P., Trua, T., 2002. Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano Tyrrhenian Sea. Journal of Geophysical Research 107 (B9), 2188, doi:10.1029/2001JB000285. Marotta, A.M., Barzaghi, R., Borghi, A., Spelta, E., 2007. Gravity constraints on the dynamics of the crust-mantle system during Calabrian subduction. Geophysical Journal International 171, 977–985. Mascle, J., Kastens, K., Auroux, C., Party, L.S.D., 1988. A land-locked back-arc basin: preliminary results from ODP Leg 107 in the Tyrrhenian Sea. Tectonophysics 146, 149–162. Montone, P., Amato, A., Pondrelli, S., 1999. Stress map of Italy. Journal of Geophysical Research 104, 25595–25610. Montuori, C., Cimini, G.B., Favali, P., 2007. Teleseismic tomography of the Southern Tyrrhenian subduction zone: new results from seafloor and land recordings. Journal of Geophysical Research 112, B03311, doi:10.1029/2005JB004114. Nicolosi, I., Speranza, F., Chiappini, M., 2006. Ultrafast oceanic spreading of the Marsili basin, Southern Tyrrhenian Sea: evidence from magnetic anomaly analysis. Geology 349, 717–720. Nigro, F., Sulli, A., 1995. Plio-Pleistocene extensional tectonics in the Western Peloritani area and its offshore Northeastern Sicily. Tectonophysics 252, 295– 305. Patacca, E., Scandone, P., 1989. Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab. Atti Convegno Lincei 80, 157–176. Patacca, E., Sartori, R., Scandone, P., 1993. Tyrrhenian basin and Apennines Kinematic evolution and related dynamic constraints. NATO ASI Series C 402, 161–171. Pepe, F., Sulli, A., Bertotti, G., Catalano, R., 2005. Structural highs formation and their relationship to sedimentary basins in the north Sicily continental margin Southern Tyrrhenian Sea: implication for the Drepano Thrust Front. Tectonophysics 409, 1–18.Pepe, A., Sulli, M., Agate, D., Di Maio, A., Kok, C., Lo Iacono, Catalano, R., 2003. Plio–Pleistocene geological evolution of the Northern Sicily continental margin Southern Tyrrhenian Sea: new insights from high-resolution, multi-electrode sparker profiles. Geo-Marine Letters 23, 53–63. Pepe, F., Bertotti, G., Cella, F., Marsella, E., 2000. Rifted margin formation in the south Tyrrhenian Sea: a high-resolution seismic profile across the north Sicily passive continental margin. Tectonics 19, 241–257. Piromallo, C., Morelli, A., 1997. Imaging the Mediterranean upper mantle by P-wave travel time tomography. Annali di Geofisica XL4, 963–979. Rosenbaum, G., and Lister, G.S., 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines and the Sicilian Maghrebides. Tectonics 23, TC1013, doi:10.1029/2003TC001518. Sandwell, D.T., Smith, W.H.F., 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research 102 (5), 10039–10054. Sartori, R., 2005. Bedrock geology of the Tyrrhenian Sea. In: Finetti, I. (Ed.), Deep Seismic Exploration of the Central Mediterranean and Italy. Elsevier, Amsterdam, p. 794. Sartori, R., Carrara, G., Torelli, L., Zitellini, N., 2001. Neogene evolution of the Southwestern Tyrrhenian Sea Sardinia basin and Western Bathyal plain. Marine Geology 175, 47–66. Savelli, C., Schreider, A.A., 1991. The opening processes in the deep Tyrrhenian basins of the Marsili and Vavilov, as deduced from magnetic and chronological evidence of their igneous crust. Tectonophysics 190, 119–131. Savelli, C., 2001. Two-stage progression of volcanism8–0Mainthecentral Mediterranean Southern Italy. Journal of Geodynamics 31, 393–410. Savelli, C., 2002. Time-space distribution of magmatic activity in the Western Mediterranean and peripheral orogens during the past 30Ma a stimulus to geodynamic considerations. Journal of Geodynamics 34, 99–126. Serri, G., 1990. Neogene–Quaternary magmatism of the Tyrrhenian region: characterization of themagmasources and geodynamic implications. Memorie Societa’ Geologica Italiana 41, 219–242. Spakman, W., van der Lee, S., van der Hilst, R., 1993. Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Physics of the Earth and Planetary Interiors 791-2, 3–74. Speranza, F., Pompilio, M., D’Ajello Caracciolo, F., Sagnotti, L., 2008. Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. Journal of Geophysical Research 113, B09101, doi:10.1029/2007JB005139. Speranza, F., Branca, S., Coltelli, M., D’Ajello Caracciolo, F., Vigliotti, L., 2006. How accurate is “paleomagnetic dating”? New evidence from historical lavas from Mount Etna. Journal of Geophysical Research 111, B12S33, doi:10.1029/2006JB004496. Speranza, F., Maniscalco, R., Grasso, M., 2003. Pattern of orogenic rotations in Central-eastern Sicily: implications for the timing of spreading in the Tyrrhenian Sea. Journal Geological Society of London 160, 183–195. Sulli, A., 2000. Structural framework and crustal characters of the Sardinia Channel alpidic transect in the central Mediterranean. Tectonophysics 324, 321–336. Torelli, F., Cornini, S., Brancolini, G., Zitellini, N., 1991. The Sardinia Channel Central Mediterranean: a structural analysis of a submarine orogenic chain. Studi Geologici Camerti 1990, 35–36, Special Issue. Ventura, G., Vilardo, G., Milano, G., Pino, N.A., 1999. Relationshipamongcrustal structure, volcanism and strike-slip tectonics in the Lipari-Vulcano volcanic complex Aeolian islands Southern Tyrrhenian Sea, Italy. Physics of the Earth and Planetary Interiors 116, 31–52. von Frese, R.R.B., Hinze, W.J., Braile, L.W., 1982. Regional North-American gravity and magnetic anomaly correlations. Geophysical Journal of the Royal Astronomical Society 69, 745–761. von Frese, R.R.B., Jones, M.B., Kim, J.W., 1997a. Spectral correlation of magnetic and gravity anomalies of Ohio. Geophysics 62, 365–380. von Frese, R.R.B., Jones, M.B., Kim, J.W., 1997b. Analysis of anomaly correlations. Geophysics 62, 342–350. Westaway, R., 1993. Quaternary uplift of Southern Italy. Journal of Geophysical Research 98, 21741–21772. Zanella, E., Lanza, R., 1994. Remanent and induced magnetization in the volcanites of Lipari and Vulcano (Aeolian islands). Annals of Geophysics 37, 1149– 1156. Zanella, E., De Astis, G., Dellino, P., Lanza, R., La Volpe, L., 1999. Magnetic fabric and remanent magnetization of pyroclastic surge deposits from Vulcano (Aeolian islands Italy). Journal of Volcanology and Geothermal Research 93, 217– 236. Zanella, E., De Astis, G., Lanza, R., 2001. Palaeomagnetism of welded, pyroclastic-fall scoriae at Vulcano, Aeolian Archipelago. Journal of Volcanology and Geothermal Research 107, 71–86.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.obiettivoSpecifico5.7. Consulenze in favore di istituzioni nazionali e attività nell'ambito di trattati internazionalien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDe Ritis, R.en
dc.contributor.authorVentura, G.en
dc.contributor.authorChiappini, M.en
dc.contributor.authorCarluccio, R.en
dc.contributor.authorVon Frese, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentSchool of Earth Science, Ohio State University, Columbus, OH 43210, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSchool of Earth Science, Ohio State University, Columbus, OH 43210, USA-
crisitem.author.orcid0000-0003-1771-0132-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.orcid0000-0003-4344-0965-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf3.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 10

462
checked on Apr 17, 2024

Download(s)

45
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric