Earth-prints repository, logo   DSpace

About DSpace Software
|earth-prints home page | roma library | bologna library | catania library | milano library | napoli library | palermo library
Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6184

Authors: Adelfio, Giada
Chiodi, Marcello
D'Alessandro, Antonino*
Luzio, Dario
Title: Functional Principal Components direction to cluster earthquake
Issue Date: 2-May-2010
Keywords: Waveforms clustering
Abstract: Looking for curves similarity could be a complex issue characterized by subjective choices related to continuous transformations of observed discrete data (Chiodi, 1989). In this paper we combine the aim of finding clusters from a set of individual curves to the functional nature of data, applying a variant of a k-means algorithm based on the principal component rotation of data. We apply a classical clustering method to rotated data, according to the direction of maximum variance. A k-means clustering algorithm based on PCA rotation of data is proposed, as an alternative to methods that require previous interpolation of data based on splines or linear fitting (García-Escudero and Gordaliza (2005), Tarpey (2007), Sangalli et al. (2008)).
Appears in Collections:Conference materials
04.06.99. General or miscellaneous

Files in This Item:

File Description SizeFormatVisibility
EGU2010-10344-1.pdfEGU Abstract99.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Share this record
Del.icio.us

Citeulike

Connotea

Facebook

Stumble it!

reddit


 

Valid XHTML 1.0! ICT Support, development & maintenance are provided by CINECA. Powered on DSpace Software. CINECA