Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6127
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2010-09-28T13:32:24Zen
dc.date.available2010-09-28T13:32:24Zen
dc.date.issued2010-09-28en
dc.identifier.urihttp://hdl.handle.net/2122/6127en
dc.description.abstractThis report proposes to discuss the Fourier domain analysis performances of a RESPER probe. A uniform ADC, which is characterized by a sensible phase inaccuracy depending on frequency, is connected to a Fast Fourier Transform (FFT) processor, that is especially affected by a round-off amplitude noise linked to both the FFT register length and samples number. If the register length is equal to 32 bits, then the round-off noise is entirely negligible, else, once bits are reduced to 16, a technique of compensation must occur. In fact, oversampling can be employed within a short time window, reaching a compromise between the needs of limiting the phase inaccuracy due to ADC and not raising too much the number of averaged FFT values sufficient to bound the round-off. Finally, the appendix presents an outline of somewhat lengthy demonstrations needed to calculate the amplitude and especially phase inaccuracies due to the round-off noise of FFT processors.en
dc.description.sponsorshipIstituto Nazionale di Geofisica e Vulcanologia INGV) – Sezione Roma 2 - via di Vigna Murata 605, I-00143 Rome, Italyen
dc.language.isoEnglishen
dc.relation.ispartofseriesRapporti Tecnici INGVen
dc.relation.ispartofseries159en
dc.subjectFast Fourier Transformen
dc.subjectRound-Off Noiseen
dc.titleFourier Domain Analysis performances of a RESPER probeen
dc.title.alternativeAmplitude and Phase inaccuracies due to the Round-Off noise of FFT processorsen
dc.typereporten
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.identifier.URLhttp://lanl.arxiv.org/abs/1009.1832en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.01. Data processingen
dc.relation.referencesArpaia, P., Daponte, P. and Michaeli, L., (1999). Influence of the architecture on ADC error modelling. IEEE T. Instrum. Meas, 48, 956-966. Arpaia, P., Daponte, P. and Rapuano, S., (2003). A state of the art on ADC modelling. Comput. Stand. Int., 26, 31–42. Björsell, N. and Händel, P., (2008). Achievable ADC performance by post-correction utilizing dynamic modeling of the integral nonlinearity. Eurasip J. Adv. Sig. Pr., 2008, ID 497187 (10 pp). Declerk, P., (1995). Bibliographic study of georadar principles, applications, advantages, and inconvenience. NDT & E Int., 28, 390-442 (in French, English abstract). Del Vento, D. and Vannaroni, G., (2005). Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil. Rev. Sci. Instrum., 76, 084504 (1-8). Dishan, H., (1995). Phase Error in Fast Fourier Transform Analysis. Mech. Syst. Signal Pr., 9, 113-118. Grard, R., (1990). A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration. Meas. Sci. Technol., 1, 295-301. Grard, R., (1990). A quadrupole system for measuring in situ the complex permittvity of materials: application to penetrators and landers for planetary exploration. Meas. Sci. Technol., 1, 801-806. Grard, R. and Tabbagh, A., (1991). A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth. J. Geophys. Res., 96, 4117-4123. Jankovic, D. and Öhman, J., (2001). Extraction of in-phase and quadrature components by IF-sampling. Department of Signals and Systems, Cahlmers University of Technology, Goteborg (carried out at Ericson Microwave System AB). Kuffel, J., Malewsky, R. and Van Heeswijk, R. G., (1991). Modelling of the dynamic performance of transient recorders used for high voltage impulse tests. IEEE T. Power Deliver., 6, 507-515. Ming, X. and Kang, D., (1996). Corrections for frequency, amplitude and phase in Fast Fourier transform of harmonic signal. Mech. Syst. Signal Pr., 10, 211-221. Mojid, M. A., Wyseure, G. C. L. and Rose, D. A., (2003). Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering. Geotech. Geo. Eng., 21, 243-258. Mojid, M. A. and Cho, H., (2004). Evaluation of the time-domain reflectometry (TDR)-measured composite dielectric constant of root-mixed soils for estimating soil-water content and root density. J. Hydrol., 295, 263–275. Oppenheim, A. V., Schafer, R.W. and Buck, J. R., (1999). Discrete-Time Signal Processing (Prentice Hall International, Inc., New York - II Ed.). Papoulis, A., (1991). Probability, Random Variables, and Stochastic Processes (McGraw-Hill International Editors, Singapore - III Ed.). Polge, R. J., Bhagavan, B. K. and Callas, L., (1975). Evaluating analog-to-digital converters. Simulation, 24, 81-86. Razavi, B., (1995). Principles of Data Conversion System Design (IEEE Press, New York). Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G., (2005). Electrical resistivity survey in soil science: a review. Soil Till,. Res., 83, 172-193. Sbartaï, Z. M., Laurens, S., Balayssac, J. P., Arliguie, G. and Ballivy, G., (2006). Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures. NDT & E Int., 39, 400-407. Settimi, A., Zirizzotti A., Baskaradas, J. A. and Bianchi, C., (2010). Inaccuracy assessment for simultaneous measurement of resistivity and permittivity applying sensitivity and transfer function approaches. Ann. Geophys-Italy, 53, 2, 1-19; ibid., Earth-prints, http://hdl.handle.net/2122/6111 (2010); ibid., arXiv:0908.0641 [physics.geophysiscs] (2009). Settimi, A., Zirizzotti A., Baskaradas, J. A. and Bianchi, C., (2010). Optimal requirements of a data acquisition system for a quadrupolar probe employed in electrical spectroscopy, accepted for publication on Ann. Geophys-Italy (23/07/2010); ibid, Earth-prints, http://hdl.handle.net/2122/5176 (2009); ibid., arXiv:0908.0648 [physics.geophysiscs] (2009). Settimi, A., Zirizzotti A., Baskaradas, J. A. and Bianchi, C., (2010). Design of an induction probe for simultaneous measurements of permittivity and resistivity. Quaderni di Geofisica, 79, 26 pp; ibid., Earth-prints, http://hdl.handle.net/2122/5173 (2009); ibid., arXiv:0908.0651 [physics.geophysiscs] (2009). Tabbagh., A., Hesse, A. and Grard, R., (1993). Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites. Geophys. Prospect., 41, 579-597. Vannaroni, G., Pettinelli, E., Ottonello, C., Cereti, A., Della Monica, G., Del Vento, D., Di Lellis, A. M., Di Maio, R., Filippini, R., Galli, A., Menghini, A., Orosei, R., Orsini, S., Pagnan, S., Paolucci, F., Pisani, A. R., Schettini, G., Storini, M. and Tacconi, G., (2004). MUSES: multi-sensor soil electromagnetic sounding. Planet. Space Sci., 52, 67–78. Zhang, J. Q. and Ovaska, S. J., (1998). ADC characterization by an eigenvalues method. Instrumentation and Measurement Technology Conference (IEEE), 2, 1198-1202.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.fulltextopenen
dc.contributor.authorSettimi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypereport-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_93fc-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Reports
Files in This Item:
File Description SizeFormat
Rapporti Tecnici INGV 159.pdfMain Article1.9 MBAdobe PDFView/Open
Show simple item record

Page view(s)

138
checked on Apr 24, 2024

Download(s) 50

123
checked on Apr 24, 2024

Google ScholarTM

Check