Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6126
DC FieldValueLanguage
dc.contributor.authorallDe Siena, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-09-28T06:32:19Zen
dc.date.available2010-09-28T06:32:19Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6126en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.en
dc.description.abstractPassive high‐resolution attenuation tomography is used here to image the geological structure in the first upper 4 km of the shallow crust beneath the Campi Flegrei caldera, southern Italy. The inverse Q was estimated for each source‐receiver path using the coda‐normalization method (S‐waves) and the slope decay method (P‐waves and S‐waves). Inversion was performed using a multi‐resolution method, which ensures a minimum cell‐size resolution of 500 m. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. High attenuation vertical structures are connected at the surface with the main volcanological features (e.g., the Solfatara and Mofete fumarole fields), and depict vertical Q contrast imaging important geological structures, such as the La Starza fault. These high attenuation volumes extend between the surface and a depth of about 3 km, where a hard rock layer is imaged by the sharp contrast of the quality factors. The retrieved image of the Campi Flegrei has been jointly interpreted taking into account evidence from seismological, geological, volcanological and geochemical investigations. This analysis has allowed an unprecedented view of the feeding systems in this area, and in particular it recognizes the vertically extending, high attenuation structures that correspond to gas or fluid reservoirs beneath Pozzuoli‐Solfatara, Solfatara, Mofete‐Mt. Nuovo and Agnano. This high‐attenuation system is possibly connected with the magma sill revealed at about 7 km in depth by passive travel‐time tomography.en
dc.language.isoEnglishen
dc.publisher.nameAguen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115(2010)en
dc.subjectCampi Flegreien
dc.subjectgasen
dc.titleSeismic attenuation imaging of Campi Flegrei: Evidence of gas reservoirs, hydrothermal basins, and feeding systemsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB09312en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.identifier.doi10.1029/2009JB006938en
dc.relation.referencesAbercrombie, R. E. (1995), Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5‐km depth, J. Geophys. Res., 100, 24,015–24,036. Aki, K. (1980), Attenuation of shear‐waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Inter., 21, 50–60. Aster, R. C., and R. P. Meyer (1988), Three‐dimensional velocity structure and hypocenter distribution in Campi Flegrei caldera, Italy, Tectonophysics, 149, 195–218. Aster, R. C., and R. P. Meyer (1989), Determination of shear and compressional wave velocity variations and hypocenter locations in a rapidly inflating caldera: The Campi Flegrei, Phys. Earth Planet. Intet., 55, 313–325. Aster, R. C., B. Borchers, and C. Thurber (2005), Parameter Estimation and Inverse Problems, 1st ed., vol. 90, 320 pp., Elsevier Acad., New York. Anderson, J. G., and S. E. Hough (1984), A model for the shape of the Fourier spectrum of accelleration at high frequecies, Bull. Seismol. Soc. Am., 74, 1969–1993. Bai, C., and S. Greenhalgh (2005), 3D multi‐step travel time tomography: imaging the local, deep velocity structure of Rabaul volcano, Papua New Guinea, Phys. Earth Planet. Inter., 15, 259–275. Battaglia, J., C. Troise, F. Obrizzo, F. Pingue, and G. De Natale (2006), Evidence of fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophys. Res. Lett., 33, L01307, doi:10.1029/ 2005GL024904. Battaglia, J., A. Zollo, J. Virieux, and D. Dello Iacono (2008), Merging active and passive data sets in traveltime tomography: The case study of Campi Flegrei caldera (southern Italy), Geophys. Prospect., 56, 555–573. Benz, H. M., B. A. Chouet, P. B. Dawson, J. C. Lahr, R. A. Page, and J. A. Hole (1996), Three‐dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111–8128. Berrino, G., G. Corrado, G. Luongo, and B. Toro (1984), Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift, Bull. Volcanol., 47, 187–200. Block, L. V. (1991), Joint hypocenter‐velocity inversion of local earthquakes arrival time data in two geothermal regions, Ph.D. thesis, Mass. Inst. of Technol., Cambridge. Boatwright, J. (1980), A spectral theory fo circular seismic sources: Simple estimates of source dimension, dynamic stress drop and radiated energy, Bull. Seismol. Soc. Am., 70, 1–27. Bonafede, M., and M. Mazzanti (1998), Modeling gravity variations consistent with ground deformation in the Campi Flegrei caldera, Italy, J. Volcanol. Geotherm. Res., 81, 137–157. Caliro, S., G. Chiodini, R. Moretti, R. Avino, D. Granieri, M. Russo, and J. Fiebig (2007), The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy), Geochim. Cosmochim. Acta, 71, 3040–3055. Chatterjee, S. N., A. M. Pitt, and H. M. Iyer (1985), Vp/Vs ratios in the Yellowstone National Park region, Wyoming, J. Volcanol. Geotherm. Res., 26, 213–230. Chouet, B. (1996), New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards, edited by R. Scarpa and R. I. Tilling, pp. 23–97, Springer, Berlin. Chouet, B. (2003), Volcano Seismol., Pure Appl. Geophys., 160, 739–788. Corrado, G., I. Guerra, A. Lo Bascio, G. Luongo, and R. Rampoldi (1976), Inflation and microearthquake activity at Phlegrean Fields, Italy, Bull. Volcanol., 40, 1–20. D’Antonio, M., L. Civetta, G. Orsi, L. Pappalardo, M. Piochi, A. Carandente, S. de Vita, M. A. Di Vito, and R. Isaia (1999), The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 247–268. De Gori, P., C. Chiarabba, and D. Patanè (2005), Qp structure of Mount Etna: Constraints for the physics of the plumbing system, J. Geophys. Res., 110, B05303, doi:10.1029/2003JB002875. De Lorenzo, S., A. Zollo, and F. Mongelli (2001), Source parameters and three‐dimensional attenuation structure from the inversion of microearthquake pulse width data: Qp imaging and inferences on the termal state of Campi Flegrei caldera (southern Italy), J. Geophys.Res., 106, 16,265–16,286. Del Pezzo, E., S. De Martino, and M. T. Parriniello (1993), Seismic site amplification factors in Campi Flegrei, southern Italy, Phys. Earth Planet. Inter., 78, 105–117. Del Pezzo, E., F. Bianco, L. De Siena, and A. Zollo (2006a), Small scale shallow attenuation structure at Mt. Vesuvius, Italy, Phys. Earth Planet. Inter., 157, 257–268. Del Pezzo, E., F. Bianco, and L. Zaccarelli (2006b), Separation of Qi and Qs from passive data at Mt. Vesuvius: A reappraisal of the seismic attenuation estimates, Phys. Earth Planet. Inter., 159, 202–212. De Natale, G., G. Iannaccone, M. Martini, and A. Zollo (1987), Seismic sources and attenuation properties at the Campi Flegrei volcanic area, Pure Appl. Geophys., 125(6), 883–917. De Siena, L., E. Del Pezzo, F. Bianco, and A. Tramelli (2009), Multiple resolution seismic attenuation imaging at Mt. Vesuvius, Phys. Earth Planet. Inter., 173, 17–32. Dias, N. A., L. Matias, N. Louren ço, J. Madeira, F. Carrilho, and J. L. Gaspar (2007), Crustal seismic velocity structure near Faial and Pico Islands (AZORES), from local earthquake tomography, Tectonopysics, 445, 301–317. Di Renzo, V., M. A. Di Vito, I. Arienzo, A. Carandente, L. Civetta, M. D’Antonio, F. Giordano, G. Orsi, and S. Tonarini (2007), Magmatic history of Somma‐Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli dellaTorre), J. Petrol., 48, 753–784. Di Vito, M. A., L. Lirer, G. Mastrolorenzo, and G. Rolandi (1987), The Monte Nuovo eruption (Campi Flegrei, Italy), Bull. Volcanol., 49, 608–615. Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, S. de Vita, M. D’Antonio, M. Pappalardo, and L. M. Piochia (1999), Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 91, 221–246. Eberhart‐Phillips, D., M. Reyners, M. Chadwick, and J. M. Chiu (2005), Crustal heterogeneity and subduction processes: 3‐D VP, VP /VS and Q in the southern North Island, New Zealand, Geophys. J. Int., 162, 270–288. Gaeta, S. G., G. De Natale, F. Peluso, G. Mastrolorenzo, D. Castagnolo, C. Troise, F. Pingue, G. Mita, and S. Rossano (1998), Genesis and evolution of unrest episodes at Campi Flegrei caldera: The role of thermal fluiddynamical processes in the geothermal system, J. Geophys. Res., 103, 20,921–20,933. Gottsman, J., H. Rymer, and G. Berrino (2006), Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion, J. Volcanol. Geotherm. Res., 150, 132–145. Gusev, A. A., and I. R. Abubakirov (1999), Vertical profile of effective turbidity reconstructed from broadening of incoherent body‐wave pulses, Geophys. J. Int., 136, 309–323. Hansen, S., C. H. Thurber, M. Mandernach, F. Haslinger, and C. Doran (2004), Seismic velocity and attenuation structure of the East Rift Zone and south flank of Kilauea Volcano, Hawaii, Bull. Seismol. Soc. Am., 94, 1430–1440. Julian, B. R., A. Ross, G. R. Foulger, and J. R. Evans (1996), Threedimensional seismic image of a geothermal reservoir, The Geysers, California, Geophys. Res. Lett., 23, 685–688. Koulakov, I. (2009), LOTOS code for local earthquake tomographic inversion, benchmarks for testing tomographic algorithms, Bull. Seismol. Soc. Am., 99, 194–214. Lomax, A., A. Zollo, P. Capuano, and J. Virieux (2001) Precise absolute earthquake location under Somma‐Vesuvius volcano using a new three‐dimensional velocity model, Geophys. J. Int., 146, 313–331. Margaris, B. N., and D. N. Boore (1998) Determination of Ds and 0 from response spectra of large earthquakes in Greece, Bull. Seismol. Soc. Am., 88, 170–182. Michelini, A., and T. V. McEvilly (1991), Seismological studies at Parkfield, I, Simultaneous inversion for velocity structure and hypocentres using cubic b‐splines parameterization, Bull. Seismol. Soc. Am., 81, 524–552. Mulargia, F., and S. Tinti (1985), Seismic sample areas defined from incomplete catalogues: An application to the Italian territory, Phis. Earth Planet. Inter., 40, 273–300. Nakajima, J., and A. Hasegawa (2003), Tomographic imaging of seismic velocity structure in and around the Onikobe volcanic area, northeastern Japan, implications for fluid distribution, J. Volcanol. Geotherm. Res., 127, 1–18. Nolet, G. (2008), A Breviary of Seismic Tomography, Imaging the Interior of the Earth and Sun, 1st ed., 344 pp., Cambridge Univ. Press, New York. Orsi, G., S. de Vito, and M. Di Vito (1996), The restless, resurgent Campi Flegrei nested caldera (Italy), Constraints on its evolution and configuration, J. Volcanol. Geotherm. Res., 74, 179–214. Patanè, D., G. Barberi, O. Cocina, P. De Gori, and C. Chiarabba (2006), Time‐resolved seismic tomography detects magma intrusions at Mount Etna, Science, 313, 821–823. Pujol, J., and R. Aster (1990), Joint hypocentral determination and the detection of low‐velocity anomalies. An example from the Phlegraean Fields earthquakes. Bull. Seismol. Soc. Am., 80(1), 129–139. Saccorotti, G., S. Petrosino, F. Bianco, M. Castellano, D. Galluzzo, M. La Rocca, E. Del Pezzo, L. Zaccarelli, and P. Cusano (2007), Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei Caldera, Italy, Phys. Earth Planet. Inter., 165, 14–24. Scandone, R., F. Bellucci, L. Kirer, and G. Rolandi (1991), The structure of the Campanian Plain and the activity of tje Napolitan volcanoes, J. Volcanol. Geotherm. Res., 48, 1–31. Sato, H., and M. C. Fehler (1998), Seismic Wave Propagation and Scattering in the Heterogenous Earth, 1st ed., 308 pp., Springer, New York. Scarpa, R., F. Tronca, F. Bianco, and E. Del Pezzo (2002), High resolution velocity structure beneath Mount Vesuvius from seismic array data, Geophys. Res. Lett., 29(21), 2040, doi:10.1029/2002GL015576. Schmeling, H. (1985), Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I, Elasticity and anelasticity, Phys. Earth Planet. Inter., 41, 34–57. Schurr, B., G. Asch, A. Rietbrock, R. Trumbull, and C. Haberland (2003), Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography, Earth. Planet. Sci. Lett., 215, 105–119. Sudo, Y., and L. S. L. Kong (2001), Three‐dimensional seismic velocity structure beneath Aso Volcano, Kyushu, Japan, Bull. Volcanol., 63, 326–344. Takei, Y. (2002), Effect of pore geometry on VP /VS: From equilibrium geometry to crack, J. Geophys. Res., 107(B2), 2043, doi:10.1029/ 2001JB000522. Todesco, M., G. Chiodini, and G. Macedonio (2003), Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing, J. Volcanol. Geotherm. Res., 125, 57–79. Vanorio, T., J. Virieux, P. Capuano, and G. Russo (2005), Threedimensional tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera, J. Geophys. Res., 110, B03201, doi:10.1029/2004JB003102. Villaseñor, A., H. M. Benz, L. Filippi, G. De Luca, R. Scarpa, G. Patané, and S. Vinciguerra (1998), Three‐dimensional P‐wave velocity structure of Mt. Etna, Italy, Geophys. Res. Lett., 25, 1975–1978. Walck, M. (1988), Three‐dimensional Vp/Vs variations for the Coso region, California, J. Geophys. Res., 93, 2047–2052. Zollo, A., P. Capuano, and M. Corciuolo (Eds.) (2006), Geophysical Exploration of the Campi Flegrei (Southern Italy) Caldera’s Interiors, Data, Methods and Results, Grup. Naz. per la Vulcanol., Naples, Italy. Zollo, A., N. Maercklin, M. Vassallo, D. Dello Iacono, J. Virieux, and P. Gasparini (2008), Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera, Geophys. Res. Lett., 35, L12306, doi:10.1029/ 2008GL034242.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDe Siena, L.en
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorBianco, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-3615-5923-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DeSDel-10.pdf4.5 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

97
checked on Feb 10, 2021

Page view(s)

150
checked on Apr 13, 2024

Download(s)

37
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric